Suppr超能文献

将K均值聚类分析应用于间质性膀胱炎/膀胱疼痛综合征的尿液生物标志物:疾病分类的新视角

Applying K-Means Cluster Analysis to Urinary Biomarkers in Interstitial Cystitis/Bladder Pain Syndrome: A New Perspective on Disease Classification.

作者信息

Jiang Yuan-Hong, Jhang Jia-Fong, Wang Jen-Hung, Wu Ya-Hui, Kuo Hann-Chorng

机构信息

Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan.

Department of Urology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.

出版信息

Int J Mol Sci. 2025 Apr 14;26(8):3712. doi: 10.3390/ijms26083712.

Abstract

This study applied K-means cluster analysis to urinary biomarker profiles in interstitial cystitis/bladder pain syndrome (IC/BPS) patients, aiming to provide a new perspective on disease classification and its clinical relevance. We retrospectively analyzed urine samples from 127 IC/BPS patients and 30 controls. The urinary levels of 10 inflammatory cytokines and three oxidative stress markers (8-hydroxy-2-deoxyguanosin [8-OHdG], 8-isoprostane, and total antioxidant capacity [TAC]) were quantified. K-means clustering was performed to identify biomarker-based patient subgroups. IC/BPS patients exhibited significantly elevated urinary levels of Eotaxin, MCP-1, NGF, 8-OHdG, 8-isoprostane, and TAC compared to controls (all < 0.05). K-means clustering identified four distinct subgroups. Cluster 4, characterized by the highest levels of inflammatory and oxidative stress biomarkers, comprised 85% ESSIC type 2 IC/BPS patients and exhibited the lowest visual analogue scale (VAS) pain scores and maximal bladder capacity (MBC). Correlation analysis revealed distinct cluster-specific associations between biomarker levels and clinical parameters, including the VAS pain score, MBC, the grade of glomerulation, and treatment outcomes. Applying K-means clustering to urinary inflammatory and oxidative stress biomarkers provides a new perspective on disease classification, identifying IC/BPS subtypes with distinct clinical and biochemical characteristics. This approach may refine disease phenotyping and guide personalized treatment strategies in the future.

摘要

本研究将K均值聚类分析应用于间质性膀胱炎/膀胱疼痛综合征(IC/BPS)患者的尿液生物标志物谱,旨在为疾病分类及其临床相关性提供新的视角。我们回顾性分析了127例IC/BPS患者和30例对照的尿液样本。对10种炎性细胞因子和3种氧化应激标志物(8-羟基-2-脱氧鸟苷[8-OHdG]、8-异前列腺素和总抗氧化能力[TAC])的尿液水平进行了定量。进行K均值聚类以识别基于生物标志物的患者亚组。与对照组相比,IC/BPS患者的嗜酸性粒细胞趋化蛋白、单核细胞趋化蛋白-1、神经生长因子、8-OHdG、8-异前列腺素和TAC的尿液水平显著升高(均<0.05)。K均值聚类识别出四个不同的亚组。第4组以炎性和氧化应激生物标志物水平最高为特征,包括85%的ESSIC 2型IC/BPS患者,其视觉模拟评分(VAS)疼痛评分最低,膀胱最大容量(MBC)最大。相关性分析揭示了生物标志物水平与临床参数(包括VAS疼痛评分、MBC、肾小球化程度和治疗结果)之间不同的聚类特异性关联。将K均值聚类应用于尿液炎性和氧化应激生物标志物为疾病分类提供了新的视角,识别出具有不同临床和生化特征的IC/BPS亚型。这种方法可能会完善疾病表型分析,并在未来指导个性化治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2860/12028259/6400e4039573/ijms-26-03712-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验