Suppr超能文献

联合尿生物标志物和机器学习模型可以提高预测间质性膀胱炎/膀胱疼痛综合征患者长期治疗结局的准确性。

Combination of urinary biomarkers and machine-learning models provided a higher predictive accuracy to predict long-term treatment outcomes of patients with interstitial cystitis/bladder pain syndrome.

机构信息

Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.

Department of Urology, School of Medicine, Tzu Chi University, Hualien, 970, Taiwan.

出版信息

World J Urol. 2024 Mar 20;42(1):173. doi: 10.1007/s00345-024-04843-3.

Abstract

PURPOSE

To identify predictive factors for satisfactory treatment outcome of the patients with IC/BPS using urine biomarkers and machine-learning models.

METHODS

The IC/BPS patients were prospectively enrolled and provide urine samples. The targeted analytes included inflammatory cytokines, neurotrophins, and oxidative stress biomarkers. The patients with overall subjective symptom improvement of ≥ 50% were considered to have satisfactory results. Binary logistic regression, receiver-operating characteristic (ROC) curve, machine-learning decision tree, and random forest models were used to analyze urinary biomarkers to predict satisfactory results.

RESULTS

Altogether, 57.4% of the 291 IC/BPS patients obtained satisfactory results. The patients with satisfactory results had lower levels of baseline urinary inflammatory cytokines and oxidative biomarkers than patients without satisfying results, including interleukin-6, monocyte chemoattractant protein-1 (MCP-1), C-X-C motif chemokine 10 (CXCL10), oxidative stress biomarkers 8-hydroxy-2'-deoxyguanosine (8-OHDG), 8-isoprostane, and total antioxidant capacity (TAC). Logistic regression and multivariable analysis revealed that lower levels of urinary CXCL10, MCP-1, 8-OHDG, and 8-isoprostane were independent factors. The ROC curve revealed that MCP-1 level had best area under curve (AUC: 0.797). In machine-learning decision tree model, combination of urinary C-C motif chemokine 5, 8-isoprostane, TAC, MCP-1, and 8-OHDG could predict satisfactory results (accuracy: 0.81). The random forest model revealed that urinary 8-isoprostance, MCP-1, and 8-OHDG levels had the most important influence on accuracy.

CONCLUSION

Machine learning decision tree model provided a higher accuracy for predicting treatment outcome of patients with IC/BPS than logistic regression, and levels of 8-isoprostance, MCP-1, and 8-OHDG had the most important influence on accuracy.

摘要

目的

利用尿液生物标志物和机器学习模型,确定预测间质性膀胱炎/膀胱疼痛综合征(IC/BPS)患者治疗效果满意的因素。

方法

前瞻性招募 IC/BPS 患者并采集尿液样本。目标分析物包括炎症细胞因子、神经生长因子和氧化应激生物标志物。总体主观症状改善≥50%的患者被认为治疗效果满意。采用二元逻辑回归、受试者工作特征(ROC)曲线、机器学习决策树和随机森林模型分析尿液生物标志物,预测治疗效果满意。

结果

共 291 例 IC/BPS 患者中,57.4%的患者治疗效果满意。与治疗效果不满意的患者相比,治疗效果满意的患者基线尿液炎症细胞因子和氧化应激生物标志物水平较低,包括白细胞介素 6、单核细胞趋化蛋白 1(MCP-1)、C-X-C 基序趋化因子 10(CXCL10)、氧化应激生物标志物 8-羟基-2'-脱氧鸟苷(8-OHDG)、8-异前列腺素和总抗氧化能力(TAC)。Logistic 回归和多变量分析显示,尿液 CXCL10、MCP-1、8-OHDG 和 8-异前列腺素水平较低是独立因素。ROC 曲线显示 MCP-1 水平具有最佳曲线下面积(AUC:0.797)。在机器学习决策树模型中,联合检测尿液 C-C 基序趋化因子 5、8-异前列腺素、TAC、MCP-1 和 8-OHDG 可预测治疗效果满意(准确性:0.81)。随机森林模型显示,尿液 8-异前列腺素、MCP-1 和 8-OHDG 水平对准确性的影响最大。

结论

与逻辑回归相比,机器学习决策树模型对预测 IC/BPS 患者的治疗效果具有更高的准确性,8-异前列腺素、MCP-1 和 8-OHDG 水平对准确性的影响最大。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验