文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

斑马鱼中kcnb1功能丧失会导致与γ-氨基丁酸调节异常相关的神经发育和癫痫障碍。

kcnb1 loss of function in zebrafish causes neurodevelopmental and epileptic disorders associated with γ-aminobutyric acid dysregulation.

作者信息

Robichon Lauralee, Bar Claire, Marian Anca, Lehmann Lisa, Renault Solène, Kabashi Edor, Ciura Sorana, Nabbout Rima

机构信息

Translational Research for Neurological Disorders Lab, Institut Imagine, Université Paris Cité, INSERM U1163, Paris, France.

Université Paris Cité, Paris, France.

出版信息

Epilepsia. 2025 Aug;66(8):3048-3063. doi: 10.1111/epi.18407. Epub 2025 May 7.


DOI:10.1111/epi.18407
PMID:40332468
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12371631/
Abstract

OBJECTIVE: KCNB1 encodes an α-subunit of the delayed-rectifier voltage-dependent potassium channel K2.1. De novo pathogenic variants of KCNB1 have been linked to developmental and epileptic encephalopathies (DEEs), diagnosed in early childhood and sharing limited treatment options. Loss of function (LOF) of KCNB1 has been proposed as the pathogenic mechanism in these disorders. Here, we aim to characterize a knockout zebrafish line targeting kcnb1 (kcnb1 and kcnb1) for investigating DEEs. METHODS: This study presents the phenotypic analysis of a kcnb1 knockout zebrafish model, obtained by CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) mutagenesis. Through a combination of immunohistochemistry, behavioral assays, electrophysiological recordings, and neurotransmitter quantifications, we have characterized the expression, function, and impact of this kcnb1 LOF model at early stages of development. RESULTS: In wild-type (WT) larval zebrafish, kcnb1 was found in various regions of the central nervous system and in diverse cell subtypes including neurons, oligodendrocytes, and microglial cells. Both kcnb1 and kcnb1 zebrafish displayed impaired swimming behavior and "epilepsy-like" features that persisted through embryonic and larval development, with variable severity, which was restored by the human K2.1 WT DNA. When exposed to the chemoconvulsant pentylenetetrazol (PTZ), both knockout models showed elevated locomotor activity. In addition, PTZ-exposed kcnb1 larvae exhibited increased bdnf mRNA expression and higher c-Fos fluorescence intensity in cells of the telencephalon. This same model presents spontaneous and provoked epileptiform-like electrographic activity associated with γ-aminobutyric acid dysregulation, whereas the brain anatomy and neuronal circuit organization remained unaffected. SIGNIFICANCE: We conclude that kcnb1 knockout in zebrafish leads to early onset phenotypic features reminiscent of DEEs, affecting neuronal functions and primarily inhibitory pathways in developing embryonic and larval brains. This study highlights the relevance of this model for investigating developmental neuronal signaling pathways in KCNB1-related DEEs.

摘要

目的:KCNB1编码延迟整流电压依赖性钾通道K2.1的α亚基。KCNB1的新生致病性变异与发育性和癫痫性脑病(DEE)相关,这些疾病在幼儿期被诊断出来,且治疗选择有限。KCNB1功能丧失(LOF)被认为是这些疾病的致病机制。在此,我们旨在表征一种靶向kcnb1(kcnb1和kcnb1)的基因敲除斑马鱼品系,用于研究DEE。 方法:本研究展示了通过CRISPR/Cas9(成簇规律间隔短回文重复序列)诱变获得的kcnb1基因敲除斑马鱼模型的表型分析。通过免疫组织化学、行为分析、电生理记录和神经递质定量相结合的方法,我们在发育早期阶段表征了该kcnb1 LOF模型的表达、功能和影响。 结果:在野生型(WT)斑马鱼幼体中,kcnb1存在于中枢神经系统的各个区域以及包括神经元、少突胶质细胞和小胶质细胞在内的多种细胞亚型中。kcnb1和kcnb1斑马鱼均表现出游泳行为受损和贯穿胚胎及幼体发育过程的“癫痫样”特征,严重程度各异,而人类K2.1野生型DNA可使其恢复。当暴露于化学惊厥剂戊四氮(PTZ)时,两种基因敲除模型均表现出运动活性升高。此外,暴露于PTZ的kcnb1幼体在端脑细胞中表现出bdnf mRNA表达增加和更高的c-Fos荧光强度。同一模型呈现出与γ-氨基丁酸失调相关的自发性和诱发性癫痫样电图活动,而脑解剖结构和神经元回路组织未受影响。 意义:我们得出结论,斑马鱼中的kcnb1基因敲除导致早期出现类似于DEE的表型特征,影响神经元功能,主要影响发育中的胚胎和幼体大脑中的抑制性通路。本研究强调了该模型在研究KCNB1相关DEE中发育性神经元信号通路方面的相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2b1/12371631/516bd8ada3bf/EPI-66-3048-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2b1/12371631/3b02ee70c342/EPI-66-3048-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2b1/12371631/f0dc4df11776/EPI-66-3048-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2b1/12371631/76a2c8eac1ae/EPI-66-3048-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2b1/12371631/4c5430523650/EPI-66-3048-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2b1/12371631/516bd8ada3bf/EPI-66-3048-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2b1/12371631/3b02ee70c342/EPI-66-3048-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2b1/12371631/f0dc4df11776/EPI-66-3048-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2b1/12371631/76a2c8eac1ae/EPI-66-3048-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2b1/12371631/4c5430523650/EPI-66-3048-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2b1/12371631/516bd8ada3bf/EPI-66-3048-g004.jpg

相似文献

[1]
kcnb1 loss of function in zebrafish causes neurodevelopmental and epileptic disorders associated with γ-aminobutyric acid dysregulation.

Epilepsia. 2025-8

[2]
Altered neurological and neurobehavioral phenotypes in a mouse model of the recurrent KCNB1-p.R306C voltage-sensor variant.

Neurobiol Dis. 2024-5

[3]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[4]
Characterization of the zebrafish gabra1 germline loss of function allele confirms a function for Gabra1 in motility and nervous system development.

Differentiation. 2024

[5]
De novo KCNB1 missense variant causing developmental and epileptic encephalopathy: Two case reports.

Medicine (Baltimore). 2025-1-10

[6]
Altered neurological and neurobehavioral phenotypes in a mouse model of the recurrent -p.R306C voltage-sensor variant.

bioRxiv. 2023-3-30

[7]
Phenotypic Spectrum in Individuals With Pathogenic Loss- and Gain-of-Function Variants.

Neurology. 2025-7-22

[8]
Developmental dysfunction in a preclinical model of Kcnq2 developmental and epileptic encephalopathy.

Neurobiol Dis. 2025-2

[9]
Zebrafish mecp2 null-mutation increases anxiety and cortisol levels but no change in adult social preference and larval chemically-induced hyperlocomotion.

BMC Neurosci. 2025-7-1

[10]
Loss of function of the zinc finger homeobox 4 gene, ZFHX4, underlies a neurodevelopmental disorder.

Am J Hum Genet. 2025-6-5

本文引用的文献

[1]
Abnormal cytoskeletal remodeling but normal neuronal excitability in a mouse model of the recurrent developmental and epileptic encephalopathy-susceptibility KCNB1-p.R312H variant.

Commun Biol. 2024-12-30

[2]
Mutant analysis of Kcng4b reveals how the different functional states of the voltage-gated potassium channel regulate ear development.

Dev Biol. 2024-9

[3]
Altered neurological and neurobehavioral phenotypes in a mouse model of the recurrent KCNB1-p.R306C voltage-sensor variant.

Neurobiol Dis. 2024-5

[4]
Zebrafish EEG predicts the efficacy of antiepileptic drugs.

Front Pharmacol. 2022-12-8

[5]
Towards Zebrafish Models of CNS Channelopathies.

Int J Mol Sci. 2022-11-12

[6]
Integrin-KCNB1 potassium channel complexes regulate neocortical neuronal development and are implicated in epilepsy.

Cell Death Differ. 2023-3

[7]
Adaptive behavior and psychiatric comorbidities in KCNB1 encephalopathy.

Epilepsy Behav. 2022-1

[8]
Efficacy of Fenfluramine and Norfenfluramine Enantiomers and Various Antiepileptic Drugs in a Zebrafish Model of Dravet Syndrome.

Neurochem Res. 2021-9

[9]
Past, present and future of zebrafish in epilepsy research.

FEBS J. 2021-12

[10]
Kcnb1 plays a role in development of the inner ear.

Dev Biol. 2021-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索