Robichon Lauralee, Bar Claire, Marian Anca, Lehmann Lisa, Renault Solène, Kabashi Edor, Ciura Sorana, Nabbout Rima
Translational Research for Neurological Disorders Lab, Institut Imagine, Université Paris Cité, INSERM U1163, Paris, France.
Université Paris Cité, Paris, France.
Epilepsia. 2025 Aug;66(8):3048-3063. doi: 10.1111/epi.18407. Epub 2025 May 7.
OBJECTIVE: KCNB1 encodes an α-subunit of the delayed-rectifier voltage-dependent potassium channel K2.1. De novo pathogenic variants of KCNB1 have been linked to developmental and epileptic encephalopathies (DEEs), diagnosed in early childhood and sharing limited treatment options. Loss of function (LOF) of KCNB1 has been proposed as the pathogenic mechanism in these disorders. Here, we aim to characterize a knockout zebrafish line targeting kcnb1 (kcnb1 and kcnb1) for investigating DEEs. METHODS: This study presents the phenotypic analysis of a kcnb1 knockout zebrafish model, obtained by CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) mutagenesis. Through a combination of immunohistochemistry, behavioral assays, electrophysiological recordings, and neurotransmitter quantifications, we have characterized the expression, function, and impact of this kcnb1 LOF model at early stages of development. RESULTS: In wild-type (WT) larval zebrafish, kcnb1 was found in various regions of the central nervous system and in diverse cell subtypes including neurons, oligodendrocytes, and microglial cells. Both kcnb1 and kcnb1 zebrafish displayed impaired swimming behavior and "epilepsy-like" features that persisted through embryonic and larval development, with variable severity, which was restored by the human K2.1 WT DNA. When exposed to the chemoconvulsant pentylenetetrazol (PTZ), both knockout models showed elevated locomotor activity. In addition, PTZ-exposed kcnb1 larvae exhibited increased bdnf mRNA expression and higher c-Fos fluorescence intensity in cells of the telencephalon. This same model presents spontaneous and provoked epileptiform-like electrographic activity associated with γ-aminobutyric acid dysregulation, whereas the brain anatomy and neuronal circuit organization remained unaffected. SIGNIFICANCE: We conclude that kcnb1 knockout in zebrafish leads to early onset phenotypic features reminiscent of DEEs, affecting neuronal functions and primarily inhibitory pathways in developing embryonic and larval brains. This study highlights the relevance of this model for investigating developmental neuronal signaling pathways in KCNB1-related DEEs.
目的:KCNB1编码延迟整流电压依赖性钾通道K2.1的α亚基。KCNB1的新生致病性变异与发育性和癫痫性脑病(DEE)相关,这些疾病在幼儿期被诊断出来,且治疗选择有限。KCNB1功能丧失(LOF)被认为是这些疾病的致病机制。在此,我们旨在表征一种靶向kcnb1(kcnb1和kcnb1)的基因敲除斑马鱼品系,用于研究DEE。 方法:本研究展示了通过CRISPR/Cas9(成簇规律间隔短回文重复序列)诱变获得的kcnb1基因敲除斑马鱼模型的表型分析。通过免疫组织化学、行为分析、电生理记录和神经递质定量相结合的方法,我们在发育早期阶段表征了该kcnb1 LOF模型的表达、功能和影响。 结果:在野生型(WT)斑马鱼幼体中,kcnb1存在于中枢神经系统的各个区域以及包括神经元、少突胶质细胞和小胶质细胞在内的多种细胞亚型中。kcnb1和kcnb1斑马鱼均表现出游泳行为受损和贯穿胚胎及幼体发育过程的“癫痫样”特征,严重程度各异,而人类K2.1野生型DNA可使其恢复。当暴露于化学惊厥剂戊四氮(PTZ)时,两种基因敲除模型均表现出运动活性升高。此外,暴露于PTZ的kcnb1幼体在端脑细胞中表现出bdnf mRNA表达增加和更高的c-Fos荧光强度。同一模型呈现出与γ-氨基丁酸失调相关的自发性和诱发性癫痫样电图活动,而脑解剖结构和神经元回路组织未受影响。 意义:我们得出结论,斑马鱼中的kcnb1基因敲除导致早期出现类似于DEE的表型特征,影响神经元功能,主要影响发育中的胚胎和幼体大脑中的抑制性通路。本研究强调了该模型在研究KCNB1相关DEE中发育性神经元信号通路方面的相关性。
Medicine (Baltimore). 2025-1-10
Front Pharmacol. 2022-12-8
Int J Mol Sci. 2022-11-12
Epilepsy Behav. 2022-1
FEBS J. 2021-12
Dev Biol. 2021-3