文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基因组学在药用植物次生代谢产物中的应用研究进展:以红花为例

Research Progress of Genomics Applications in Secondary Metabolites of Medicinal Plants: A Case Study in Safflower.

作者信息

Wu Zhihua, Hu Yan, Hao Ruru, Li Ruting, Lu Xiaona, Itale Mdachi Winfrida, Yuan Yang, Zhu Xiaoxian, Zhang Jiaqiang, Wang Longxiang, Sun Meihao, Hou Xianfei

机构信息

College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China.

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.

出版信息

Int J Mol Sci. 2025 Apr 19;26(8):3867. doi: 10.3390/ijms26083867.


DOI:10.3390/ijms26083867
PMID:40332590
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12027854/
Abstract

Medicinal plants, recognized as significant natural resources, have gained prominence in response to the increasing global demand for herbal medicines, necessitating the large-scale production of these plants and their derivatives. Medicinal plants are exposed to a variety of internal and external factors that interact to influence the biosynthesis and accumulation of secondary metabolites. With the rapid development of omics technologies such as genomics, transcriptomics, proteomics, and metabolomics, multi-omics technologies have become important tools for revealing the complexity and functionality of organisms. They are conducive to further uncovering the biological activities of secondary metabolites in medicinal plants and clarifying the molecular mechanisms underlying the production of secondary metabolites. Also, artificial intelligence (AI) technology accelerates the comprehensive utilization of high-dimensional datasets and offers transformative potential for multi-omics analysis. However, there is currently no systematic review summarizing the genomic mechanisms of secondary metabolite biosynthesis in medicinal plants. Safflower ( L.) has rich and diverse bioactive flavonoids, among of which Hydroxysafflor yellow A (HSYA) is specific to safflower and emerging as a potential medication for treating a wide range of diseases. Hence, significant progress has been made in the study of safflower as an excellent example for the regulation of secondary metabolites in medicinal plants in recent years. Here, we review the progress on the understanding of the regulation of main secondary metabolites at the multi-omics level, and summarize the influence of various factors on their types and contents, with a particular focus on safflower flavonoids. This review aims to provide a comprehensive insight into the regulatory mechanisms of secondary metabolite biosynthesis from the perspective of genomics.

摘要

药用植物被认为是重要的自然资源,随着全球对草药需求的不断增加,其重要性日益凸显,这就需要大规模生产这些植物及其衍生物。药用植物会受到多种内部和外部因素的影响,这些因素相互作用,影响次生代谢产物的生物合成和积累。随着基因组学、转录组学、蛋白质组学和代谢组学等组学技术的快速发展,多组学技术已成为揭示生物体复杂性和功能的重要工具。它们有助于进一步揭示药用植物中次生代谢产物的生物活性,并阐明次生代谢产物产生的分子机制。此外,人工智能(AI)技术加速了高维数据集的综合利用,并为多组学分析提供了变革潜力。然而,目前尚无系统综述总结药用植物次生代谢产物生物合成的基因组机制。红花(Carthamus tinctorius L.)含有丰富多样的生物活性黄酮类化合物,其中羟基红花黄色素A(HSYA)是红花特有的,并且正在成为治疗多种疾病的潜在药物。因此,近年来,作为药用植物次生代谢产物调控的一个优秀范例,红花的研究取得了显著进展。在此,我们综述了在多组学水平上对主要次生代谢产物调控的理解进展,并总结了各种因素对其类型和含量的影响,特别关注红花黄酮类化合物。本综述旨在从基因组学角度全面洞察次生代谢产物生物合成的调控机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e870/12027854/d56c344003de/ijms-26-03867-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e870/12027854/c67a9b40a0bf/ijms-26-03867-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e870/12027854/c62ed7b73166/ijms-26-03867-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e870/12027854/77216bd183b0/ijms-26-03867-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e870/12027854/42827e1ca3f8/ijms-26-03867-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e870/12027854/d56c344003de/ijms-26-03867-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e870/12027854/c67a9b40a0bf/ijms-26-03867-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e870/12027854/c62ed7b73166/ijms-26-03867-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e870/12027854/77216bd183b0/ijms-26-03867-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e870/12027854/42827e1ca3f8/ijms-26-03867-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e870/12027854/d56c344003de/ijms-26-03867-g002.jpg

相似文献

[1]
Research Progress of Genomics Applications in Secondary Metabolites of Medicinal Plants: A Case Study in Safflower.

Int J Mol Sci. 2025-4-19

[2]
Application of multiple chemical and biological approaches for quality assessment of Carthamus tinctorius L. (safflower) by determining both the primary and secondary metabolites.

Phytomedicine. 2019-1-9

[3]
Integrating molecular characterization and metabolites profile revealed CtCHI1's significant role in Carthamus tinctorius L.

BMC Plant Biol. 2019-8-27

[4]
The Current Developments in Medicinal Plant Genomics Enabled the Diversification of Secondary Metabolites' Biosynthesis.

Int J Mol Sci. 2022-12-14

[5]
Integrated metabolomics and transcriptome analysis on flavonoid biosynthesis in safflower (Carthamus tinctorius L.) under MeJA treatment.

BMC Plant Biol. 2020-7-29

[6]
Integrated Metabolomics and Transcriptomics Provide Key Molecular Insights into Floral Stage-Driven Flavonoid Pathway in Safflower.

Int J Mol Sci. 2024-11-6

[7]
CtACO1 Overexpression Resulted in the Alteration of the Flavonoids Profile of Safflower.

Molecules. 2019-3-21

[8]
From single- to multi-omics: future research trends in medicinal plants.

Brief Bioinform. 2023-1-19

[9]
The first Illumina-based de novo transcriptome sequencing and analysis of safflower flowers.

PLoS One. 2012-6-19

[10]
Molecular characterization of flavanone 3-hydroxylase gene and flavonoid accumulation in two chemotyped safflower lines in response to methyl jasmonate stimulation.

BMC Plant Biol. 2016-6-10

本文引用的文献

[1]
Spotiphy enables single-cell spatial whole transcriptomics across an entire section.

Nat Methods. 2025-4

[2]
Plant metabolomics: applications and challenges in the era of multi-omics big data.

aBIOTECH. 2025-1-23

[3]
Uncovering phenolic profiles of different forms in safflower seeds and their antioxidant capacity, and biological activity.

J Food Sci. 2025-3

[4]
Redefining Anthraquinone-based Anticancer Drug Design through Subtle Chemical Modifications.

Anticancer Agents Med Chem. 2025-3-3

[5]
A long road ahead to reliable and complete medicinal plant genomes.

Nat Commun. 2025-3-4

[6]
Toward an integrated omics approach for plant biosynthetic pathway discovery in the age of AI.

Trends Biochem Sci. 2025-4

[7]
Emodin, a Potent Anthraquinone Mitigates MPTP-Induced Parkinsons' Disease Pathology by Regulating Nrf2 and Its Downstream Targets: In Silico and In Vivo Approach.

Mol Neurobiol. 2025-2-20

[8]
Design of CoQ crops based on evolutionary history.

Cell. 2025-4-3

[9]
Structure-based virtual screening aids the identification of glycosyltransferases in the biosynthesis of salidroside.

Plant Biotechnol J. 2025-5

[10]
Cloning and functional characterization of the caffeine oxidase gene CsCDH from Camellia sinensis.

Int J Biol Macromol. 2025-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索