Liu Chang, Zhang Haoran, Zheng Zheng, Liu Wenjia, Gu Chengfu, Lan Qi, Zhang Weiyi, Yang Jianlong
School of Biomedical Engineering, Shanghai Jiao Tong University, Xuhui District, No. 3 Teaching Building, 1954 Huashan RD, Shanghai, China.
Department of Ophthalmology, Shanghai General Hospital, Shanghai, China.
J Med Syst. 2025 May 7;49(1):59. doi: 10.1007/s10916-025-02188-x.
Optical Coherence Tomography (OCT) is a critical imaging modality for diagnosing ocular and systemic conditions, yet its accessibility is hindered by the need for specialized expertise and high computational demands. To address these challenges, we introduce ChatOCT, an offline-capable, domain-adaptive clinical decision support system (CDSS) that integrates structured expert Q&A generation, OCT-specific knowledge injection, and activation-aware model compression. Unlike existing systems, ChatOCT functions without internet access, making it suitable for low-resource environments. ChatOCT is built upon LLaMA-2-7B, incorporating domain-specific knowledge from PubMed and OCT News through a two-stage training process: (1) knowledge injection for OCT-specific expertise and (2) Q&A instruction tuning for structured, interactive diagnostic reasoning. To ensure feasibility in offline environments, we apply activation-aware weight quantization, reducing GPU memory usage to ~ 4.74 GB, enabling deployment on standard OCT hardware. A novel expert answer generation framework mitigates hallucinations by structuring responses in a multi-step process, ensuring accuracy and interpretability. ChatOCT outperforms state-of-the-art baselines such as LLaMA-2, PMC-LLaMA-13B, and ChatDoctor by 10-15 points in coherence, relevance, and clinical utility, while reducing GPU memory requirements by 79%, while maintaining real-time responsiveness (~ 20 ms inference time). Expert ophthalmologists rated ChatOCT's outputs as clinically actionable and aligned with real-world decision-making needs, confirming its potential to assist frontline healthcare providers. ChatOCT represents an innovative offline clinical decision support system for optical coherence tomography (OCT) that runs entirely on local embedded hardware, enabling real-time analysis in resource-limited settings without internet connectivity. By offering a scalable, generalizable pipeline that integrates knowledge injection, instruction tuning, and model compression, ChatOCT provides a blueprint for next-generation, resource-efficient clinical AI solutions across multiple medical domains.
光学相干断层扫描(OCT)是诊断眼部和全身疾病的关键成像方式,但其获取受到专业知识需求和高计算要求的阻碍。为应对这些挑战,我们推出了ChatOCT,这是一个具备离线能力、领域自适应的临床决策支持系统(CDSS),它集成了结构化专家问答生成、OCT特定知识注入和激活感知模型压缩。与现有系统不同,ChatOCT无需互联网接入即可运行,适用于资源匮乏的环境。ChatOCT基于LLaMA - 2 - 7B构建,通过两阶段训练过程整合来自PubMed和OCT新闻的特定领域知识:(1)针对OCT特定专业知识的知识注入,以及(2)针对结构化交互式诊断推理的问答指令调整。为确保在离线环境中的可行性,我们应用激活感知权重量化,将GPU内存使用量减少至约4.74GB,使其能够在标准OCT硬件上部署。一个新颖的专家答案生成框架通过多步骤过程构建响应来减轻幻觉,确保准确性和可解释性。ChatOCT在连贯性、相关性和临床实用性方面比诸如LLaMA - 2、PMC - LLaMA - 13B和ChatDoctor等最先进的基线高出10 - 15分,同时将GPU内存需求减少79%,同时保持实时响应性(推理时间约20毫秒)。眼科专家将ChatOCT的输出评为具有临床可操作性且符合实际决策需求,证实了其协助一线医疗服务提供者的潜力。ChatOCT代表了一种创新的用于光学相干断层扫描(OCT)的离线临床决策支持系统,它完全在本地嵌入式硬件上运行,能够在没有互联网连接的资源有限环境中进行实时分析。通过提供一个可扩展、可推广的管道,集成知识注入、指令调整和模型压缩,ChatOCT为跨多个医学领域的下一代资源高效临床人工智能解决方案提供了蓝图。