Holzer Simon, Tiwari Bhawnath, Konstantinidi Stefania, Civet Yoan, Perriard Yves
Integrated Actuators Laboratory (LAI), Ecole Polytechnique Fédérale de Lausanne, Rue de la Maladière 71b, 2000 Neuchâtel, Switzerland.
Center for Artificial Muscles (CAM), Ecole Polytechnique Fédérale de Lausanne, Rue de la Maladière 71b, 2000 Neuchâtel, Switzerland.
Materials (Basel). 2025 Apr 8;18(8):1693. doi: 10.3390/ma18081693.
With the ongoing journey of automation advancements and a trend towards miniaturization, the choice of actuator plays a crucial role. Over recent years, soft actuators have demonstrated their usefulness in various applications, especially where light weight and high strain are required. Dielectric elastomer actuators (DEAs) are a class of soft actuators that provide high-strain actuation possibilities in applications like biomedicine, logistics, or consumer electronics. A variety of work featuring DEAs for actuation has been carried out in recent years, but a single work detailing the design conception, fabrication, modeling and experimental validation is lacking, especially in the context of achieving high strains with the integration of multiple electrodes and their interaction. This work discusses these issues with an equibiaxial DEA, enabling optimized equibiaxial strain patterns due to full use of the available actuation area. The developed DEA can achieve an equibiaxial strain of 12.75% for actuation at 60 V μm over an active area of 7 cm which is an improvement of 1.3 times compared to traditional dot actuators. These properties position the device as a promising alternative for various applications like cell cultures or microassembly and provide an advantage of optimized use of passive regions within the actuator.
随着自动化技术的不断进步以及小型化趋势的发展,致动器的选择起着至关重要的作用。近年来,软致动器在各种应用中展现出了其效用,特别是在需要轻量化和高应变的场合。介电弹性体致动器(DEA)是一类软致动器,在生物医学、物流或消费电子等应用中提供了高应变驱动的可能性。近年来,已经开展了大量关于DEA驱动的工作,但缺乏一项详细阐述设计理念、制造、建模和实验验证的单一工作,特别是在通过集成多个电极及其相互作用来实现高应变的背景下。这项工作使用等双轴DEA讨论了这些问题,通过充分利用可用的驱动区域实现了优化的等双轴应变模式。所开发的DEA在7平方厘米的有效面积上,在60 V/μm驱动下可实现12.75%的等双轴应变,与传统点式致动器相比提高了1.3倍。这些特性使该器件成为细胞培养或微装配等各种应用中有前景的替代方案,并提供了优化利用致动器内无源区域的优势。