Agapovichev Anton V, Khaimovich Alexander I, Smelov Vitaliy G, Kokareva Viktoriya V, Alekseev Vyacheslav P, Zemlyakov Evgeny V, Kovchik Anton Y
Engine Production Technology Department, Samara National Research University, 34 Moskovskoye Shosse, 443086 Samara, Russia.
Turbomachinery and Heat Transfer Laboratory, Aerospace Engineering Department, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
Materials (Basel). 2025 Apr 10;18(8):1743. doi: 10.3390/ma18081743.
In the context of Additive Manufacturing (AM), particularly the Laser Powder Bed Fusion (L-PBF) technique, optimizing process parameters is essential for achieving dense, defect-free materials. This study investigates the optimization of L-PBF process parameters for a Ni-Cr-Mo-Nb-based superalloy using an integrated three-stage methodology. Stage A applies Grey Relational Analysis to identify the most favourable parameter sets. Stage B uses Response Surface Methodology to develop regression models that correlate process parameters with material characteristics, introducing the specific energy of layer fusion as a key factor. Stage C employs the Gradient Ascent Method to determine the global optimum using a desirability function. The proposed approach reduces the number of required experiments while ensuring optimal mechanical properties: yield strength of 774.73 ± 4.94 MPa, tensile strength of 1022.83 ± 5.19 MPa, and elongation at break of 23.1 ± 0.70%, with minimal LoF area (0.003 mm) and gas pore diameter (0.02 mm). The results demonstrate that integrating Grey Relational Analysis, Response Surface Methodology, and the Gradient Ascent Method effectively identifies the printability window, accelerating material characterization.
在增材制造(AM)的背景下,特别是激光粉末床熔融(L-PBF)技术中,优化工艺参数对于获得致密、无缺陷的材料至关重要。本研究采用一种集成的三阶段方法,对基于镍-铬-钼-铌的高温合金的L-PBF工艺参数进行优化。A阶段应用灰色关联分析来识别最有利的参数集。B阶段使用响应面方法来建立将工艺参数与材料特性相关联的回归模型,引入层熔合比能作为关键因素。C阶段采用梯度上升法,使用合意函数来确定全局最优值。所提出的方法减少了所需实验的数量,同时确保了最佳的力学性能:屈服强度为774.73±4.94MPa,抗拉强度为1022.83±5.19MPa,断裂伸长率为23.1±0.70%,最小熔合不足面积(0.003mm)和气孔直径(0.02mm)。结果表明,将灰色关联分析、响应面方法和梯度上升法相结合,能够有效地识别可打印窗口,加速材料表征。