Polydorou Ermioni, Manginas Georgios, Chatzigiannakis Georgios, Georgiopoulou Zoi, Verykios Apostolis, Sakellis Elias, Rizou Maria Eleni, Psycharis Vassilis, Palilis Leonidas, Davazoglou Dimitris, Soultati Anastasia, Vasilopoulou Maria
Institute of Nanoscience and Nanotechnology (INN), National Center for Scientific Research (NCSR) Demokritos, 15341 Agia Paraskevi, Greece.
Department of Mechanical Engineering, School of Engineering, University of West Attica, 12244 Egaleo, Greece.
Materials (Basel). 2025 Apr 12;18(8):1767. doi: 10.3390/ma18081767.
Bulk heterojunction (BHJ) organic solar cells (OSCs) represent a promising technology due to their cost-effectiveness, lightweight design and potential for flexible manufacturing. However, achieving a high power conversion efficiency (PCE) and long-term stability necessitates optimizing the interfacial layers. Zinc oxide (ZnO), commonly used as an electron extraction layer (EEL) in inverted OSCs, suffers from surface defects that hinder device performance. Furthermore, the active control of its optoelectronic properties is highly desirable as the interfacial electron transport and extraction, exciton dissociation and non-radiative recombination are crucial for optimum solar cell operation. In this regard, this study investigates the sulfur doping of ZnO as a facile method to effectively increase ZnO conductivity, improve the interfacial electron transfer and, overall, enhance solar cell performance. ZnO films were sulfur-treated under various annealing temperatures, with the optimal condition found at 250 °C. Devices incorporating sulfur-doped ZnO (S-ZnO) exhibited a significant PCE improvement from 2.11% for the device with the pristine ZnO to 3.14% for the OSC based on the S-ZnO annealed at 250 °C, attributed to an enhanced short-circuit current density (J) and fill factor (FF). Optical and structural analyses revealed that the sulfur treatment led to a small enhancement of the ZnO film crystallite size and an increased n-type transport capability. Additionally, the sulfurization of ZnO enhanced its electron extraction efficiency, exciton dissociation at the ZnO/photoactive layer interface and exciton/charge generation rate without altering the film morphology. These findings highlight the potential of sulfur doping as an easily implemented, straightforward approach to improving the performance of inverted OSCs.
体异质结(BHJ)有机太阳能电池(OSC)因其成本效益高、设计轻便以及具有柔性制造的潜力而成为一种很有前景的技术。然而,要实现高功率转换效率(PCE)和长期稳定性,就需要优化界面层。氧化锌(ZnO)通常用作倒置OSC中的电子提取层(EEL),但其表面缺陷会阻碍器件性能。此外,由于界面电子传输和提取、激子解离和非辐射复合对于太阳能电池的最佳运行至关重要,因此对其光电性能进行主动控制非常必要。在这方面,本研究探讨了对ZnO进行硫掺杂,作为一种有效提高ZnO电导率、改善界面电子转移并总体上提高太阳能电池性能的简便方法。ZnO薄膜在不同退火温度下进行硫处理,发现最佳条件为250°C。包含硫掺杂ZnO(S-ZnO)的器件的PCE有显著提高,从使用原始ZnO的器件的2.11%提高到基于在250°C退火的S-ZnO的OSC的3.14%,这归因于短路电流密度(J)和填充因子(FF)的提高。光学和结构分析表明,硫处理导致ZnO薄膜微晶尺寸略有增加,n型传输能力增强。此外,ZnO的硫化提高了其电子提取效率、ZnO/光活性层界面处的激子解离以及激子/电荷产生率,而没有改变薄膜形态。这些发现突出了硫掺杂作为一种易于实施、直接的方法来提高倒置OSC性能的潜力。