Song Xin, Liu Guilin, Gao Weilian, Di Yongyue, Yang Yunpeng, Li Fei, Zhou Shunfeng, Zhang Jie
Jiangsu Key Lab of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, 214122, China.
Center of Micro-Nano Engineering, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China.
Small. 2021 Feb;17(7):e2006387. doi: 10.1002/smll.202006387. Epub 2021 Jan 21.
Solution-processed zinc oxide (ZnO) is one of the widely used electron transporting layers (ETLs) for organic solar cells (OSCs). However, low optical transparency along with thickness-sensitivity of ZnO ETL constrains the improvement of photovoltaic performance and large-scale fabrication compatibility. To resolve these issues, zirconium (Zr) doping is applied to tailor the optoelectronic and morphological properties of ZnO layer. This approach not only improves light transmittance with the suppressed parasitic absorption, but also provides an optimized surface morphology for enhancing charge extraction property and reducing potential of charge trap-assisted recombination. By using ZnO:Zr as ETL in inverted device configuration, the maximum power conversion efficiency (PCE) of PM6:Y6:PC BM solar cell devices is up to 17.2%, which makes an enhancement of 9.55% compared to ZnO-based devices (15.7%). As the thickness of ZnO:Zr ETL increases to ≈60 nm, the presence of the lower parasitic absorption together with uniform surface morphology can help photovoltaic performance maintain above 15%, which is beyond the performance of the pristine ZnO-based device achieving only 11.9%. Such superiority of ZnO:Zr ETL is also validated by a series of well-known BHJ systems, where in comparison with the devices based on pristine ZnO ETL, a better photovoltaic performance from ZnO:Zr device can be achieved.
溶液法制备的氧化锌(ZnO)是有机太阳能电池(OSC)中广泛使用的电子传输层(ETL)之一。然而,ZnO电子传输层的低光学透明度以及厚度敏感性限制了光伏性能的提升和大规模制造兼容性。为了解决这些问题,采用锆(Zr)掺杂来调整ZnO层的光电和形态特性。这种方法不仅通过抑制寄生吸收提高了透光率,还提供了优化的表面形态,以增强电荷提取性能并降低电荷陷阱辅助复合的可能性。通过在倒置器件结构中使用ZnO:Zr作为电子传输层,PM6:Y6:PC BM太阳能电池器件的最大功率转换效率(PCE)高达17.2%,与基于ZnO的器件(15.7%)相比提高了9.55%。随着ZnO:Zr电子传输层厚度增加到约60 nm,较低的寄生吸收与均匀的表面形态共同作用,有助于光伏性能保持在15%以上,这超过了仅达到11.9%的原始ZnO基器件的性能。ZnO:Zr电子传输层的这种优势也在一系列著名的体异质结(BHJ)系统中得到验证,与基于原始ZnO电子传输层的器件相比,基于ZnO:Zr的器件能实现更好的光伏性能。