Suppr超能文献

通过结晶顺序操控实现效率达20.82%且对活性层厚度具有高耐受性的有机太阳能电池。

Organic solar cells with 20.82% efficiency and high tolerance of active layer thickness through crystallization sequence manipulation.

作者信息

Chen Haiyang, Huang Yuting, Zhang Rui, Mou Hongyu, Ding Junyuan, Zhou Jiadong, Wang Zukun, Li Hongxiang, Chen Weijie, Zhu Juan, Cheng Qinrong, Gu Hao, Wu Xiaoxiao, Zhang Tianjiao, Wang Yingyi, Zhu Haiming, Xie Zengqi, Gao Feng, Li Yaowen, Li Yongfang

机构信息

Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.

Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden.

出版信息

Nat Mater. 2025 Mar;24(3):444-453. doi: 10.1038/s41563-024-02062-0. Epub 2025 Jan 17.

Abstract

Printing of large-area solar panels necessitates advanced organic solar cells with thick active layers. However, increasing the active layer thickness typically leads to a marked drop in the power conversion efficiency. Here we developed an organic semiconductor regulator, called AT-β2O, to tune the crystallization sequence of the components in active layers. When adding AT-β2O in the donor (D18-Cl) and acceptor (N3) blend, N3 crystallizes behind D18-Cl, and this phenomenon is different from the co-crystallization observed in binary D18-Cl:N3 blends. This manipulation of crystallization dynamics is favourable to form bulk-heterojunction-gradient vertical phase separation in the active layer accompanied by the high crystallinity of the acceptor and balanced charge carrier mobilities in thick films. The resultant single-junction organic solar cells exhibited a certified power conversion efficiency of over 20%, as well as demonstrated exceptional adaptability across the active layer thicknesses (100-400 nm) and remarkable universality. Such breakthroughs enable large-area modules with a certified power conversion efficiency of 18.04%.

摘要

大面积太阳能电池板的印刷需要具有厚有源层的先进有机太阳能电池。然而,增加有源层厚度通常会导致功率转换效率显著下降。在此,我们开发了一种名为AT-β2O的有机半导体调节剂,以调节有源层中各组分的结晶顺序。当在供体(D18-Cl)和受体(N3)的混合物中加入AT-β2O时,N3在D18-Cl之后结晶,这种现象与二元D18-Cl:N3混合物中观察到的共结晶不同。这种对结晶动力学的操控有利于在有源层中形成体相异质结梯度垂直相分离,同时受体具有高结晶度且厚膜中电荷载流子迁移率平衡。由此产生的单结有机太阳能电池的认证功率转换效率超过20%,并且在有源层厚度(100 - 400 nm)范围内表现出卓越的适应性以及显著的通用性。此类突破使得认证功率转换效率达到18.04%的大面积模块成为可能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验