Suppr超能文献

基于机器学习和有限元分析的钛基金属间化合物合金低周疲劳寿命预测

Low-Cycle Fatigue Life Prediction of Titanium-Based Intermetallic Alloys Using Machine Learning and Finite Element Analysis.

作者信息

Xu Qiwen, Song Guoqian, Li Xingwu, Wang Yanju, Sha Aixue, Wei Yuanyuan, Hao Wenfeng

机构信息

College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China.

Materials Evaluation Center for Aeronautical and Aeroengine Application, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China.

出版信息

Materials (Basel). 2025 Apr 21;18(8):1887. doi: 10.3390/ma18081887.

Abstract

This study explores the low-cycle fatigue characteristics of three structural components fabricated from TiAlNb-based alloys utilizing Seeger's fatigue life theory and an improved Lemaitre damage evolution model. The validity and accuracy of the simulations based on these theoretical methods are verified by experimental fatigue life tests conducted at high temperatures. Additionally, the potential of employing long short-term memory (LSTM), extreme learning machine (ELM), and partial least squares (PLS) algorithms to predict the high-temperature, low-cycle fatigue life of TiAlNb alloy components is examined. Comparative analyses of the training effectiveness and practical applicability of these machine learning approaches are conducted, demonstrating that ELM exhibits superior predictive capability. This investigation thus provides a practical and efficient predictive methodology for assessing the low-cycle fatigue life of structural components composed of TiAlNb-based alloys.

摘要

本研究利用西格疲劳寿命理论和改进的勒梅特损伤演化模型,探索了由TiAlNb基合金制造的三种结构部件的低周疲劳特性。通过在高温下进行的实验疲劳寿命测试,验证了基于这些理论方法的模拟的有效性和准确性。此外,还研究了采用长短期记忆(LSTM)、极限学习机(ELM)和偏最小二乘法(PLS)算法预测TiAlNb合金部件高温低周疲劳寿命的潜力。对这些机器学习方法的训练效果和实际适用性进行了比较分析,结果表明ELM具有卓越的预测能力。因此,本研究为评估由TiAlNb基合金组成的结构部件的低周疲劳寿命提供了一种实用且高效的预测方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26a8/12028867/e037b1f64f62/materials-18-01887-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验