Koshlak Hanna, Lobanov Leonid, Basok Borys, Hrabova Tetyana, Goncharov Pavlo
Department of Sanitary Engineering, Kielce University of Technology, Aleja Tysiąclecia Państwa Polskiego, 7, 25-314 Kielce, Poland.
E. O. Paton Electric Welding Institute NAS of Ukraine 11, K. Malevicha Str., 03150 Kyiv, Ukraine.
Materials (Basel). 2025 Apr 19;18(8):1870. doi: 10.3390/ma18081870.
The COVID-19 pandemic highlighted the urgent need for sustainable and scalable air disinfection technologies in HVAC systems, addressing the limitations of energy-intensive and chemically intensive conventional methods. This study developed and evaluated a pilot experimental installation integrating plasma chemistry and photocatalysis for airborne pathogen and pollutant mitigation. The installation, designed with a modular architecture to simulate real-world HVAC dynamics, employed a bipolar plasma ioniser, a TiO photocatalytic module, and an adsorption-catalytic module for ozone abatement. Characterization techniques, including SEM and BET analysis, were used to evaluate the morphology and surface properties of the catalytic materials. Field tests in a production room demonstrated a 60% reduction in airborne microflora in three days, along with effective decomposition of ozone. The research also determined the optimal electrode geometry and interelectrode distance for stable corona discharge, which is essential for efficient plasma generation. Energy-efficient design considerations, which incorporate heat recovery and heat pump integration, achieved a 7-8-fold reduction in air heating energy consumption. These results demonstrate the potential of integrated plasma photocatalysis as a sustainable and scalable approach to enhance indoor air quality in centralised HVAC systems, contributing to both public health and energy efficiency.
新冠疫情凸显了暖通空调系统中对可持续且可扩展的空气消毒技术的迫切需求,以解决能源密集型和化学密集型传统方法的局限性。本研究开发并评估了一个集成等离子体化学和光催化的中试实验装置,用于减轻空气中的病原体和污染物。该装置采用模块化架构设计,以模拟实际的暖通空调动态,使用了双极等离子体电离器、TiO光催化模块和用于臭氧消除的吸附催化模块。包括扫描电子显微镜(SEM)和比表面积分析(BET)在内的表征技术用于评估催化材料的形态和表面性质。在生产车间进行的现场测试表明,三天内空气中的微生物群落减少了60%,同时臭氧得到有效分解。该研究还确定了稳定电晕放电的最佳电极几何形状和电极间距,这对于高效产生等离子体至关重要。纳入热回收和热泵集成的节能设计考量,使空气加热能耗降低了7至8倍。这些结果表明,集成等离子体光催化作为一种可持续且可扩展的方法,在集中式暖通空调系统中提升室内空气质量具有潜力,对公共卫生和能源效率都有贡献。