Suppr超能文献

氢化促进的自发N-O裂解机制有效提升FeB单原子层上的硝酸盐还原反应

Hydrogenation-Facilitated Spontaneous N-O Cleavage Mechanism for Effectively Boosting Nitrate Reduction Reaction on FeB MBene.

作者信息

He Yuexuan, Chen Zhiwen, Jiang Qing

机构信息

Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130022, China.

出版信息

Molecules. 2025 Apr 15;30(8):1778. doi: 10.3390/molecules30081778.

Abstract

The electrochemical reduction of toxic nitrate wastewater to green fuel ammonia under mild conditions has become a goal that researchers have relentlessly pursued. Existing designed electrocatalysts can effectively promote the nitrate reduction reaction (NORR), but the study of the catalytic mechanism is not extensive enough, resulting in no breakthroughs in performance. In this study, a novel mechanism of hydrogenation-facilitated spontaneous N-O cleavage was explored based on density functional theory calculations. Furthermore, the (adsorption energy of the adsorbed OH) was used as a key descriptor for predicting the occurrence of spontaneous N-O bond cleavage. We found that < -0.20 eV results into spontaneous N-O bond cleavage. However, excessively strong adsorption of OH hinders the formation of water. To address this challenge, we designed the eligible FeB MBene, which shows excellent catalytic activity with an ultra-low limiting potential for NORR of -0.22  V under this novel reaction mechanism. Additionally, electron-deficient Fe active sites could inhibit competing hydrogen evolution reactions (HERs), which provides high selectivity. This work may offer valuable insights for the rational design of advanced electrocatalysts with enhanced performance.

摘要

在温和条件下将有毒硝酸盐废水电化学还原为绿色燃料氨已成为研究人员不懈追求的目标。现有的设计电催化剂可以有效促进硝酸盐还原反应(NORR),但对催化机理的研究还不够广泛,导致性能没有突破。在本研究中,基于密度泛函理论计算探索了一种新的加氢促进自发N-O裂解机理。此外,(吸附的OH的吸附能)被用作预测自发N-O键裂解发生的关键描述符。我们发现,<-0.20 eV会导致自发N-O键裂解。然而,OH的过度强吸附会阻碍水的形成。为应对这一挑战,我们设计了合适的FeB MBene,在这种新反应机理下,它表现出优异的催化活性,NORR的超低极限电位为-0.22 V。此外,缺电子的Fe活性位点可以抑制竞争性析氢反应(HERs),从而提供高选择性。这项工作可能为合理设计性能增强的先进电催化剂提供有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3542/12029549/46e308e100fe/molecules-30-01778-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验