Yang Qinyan, Liu Huanran, Liu Li, Yan Zhen, Chui Chunmeng, Yang Niannian, Wang Chen, Shen Guoqing, Chen Qincheng
School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
Shanghai Pudong Development (Group) Co., Ltd., Shanghai 200127, China.
Molecules. 2025 Apr 15;30(8):1766. doi: 10.3390/molecules30081766.
Anaerobic digestion (AD) is a preferred method for food waste (FW) treatment due to its sustainability and potential for production of renewable bioenergy. However, the accumulation of volatile fatty acids (VFAs) and ammonia often destabilizes the AD process, and managing the digestate byproduct poses additional challenges. This study investigates the use of co-pyrolysis biochar synthesized from digestate and rice straw (DRB) to enhance methane production and AD efficiency. DRB addition increased cumulative methane yield by 37.1%, improved VFA conversion efficiency, and achieved a 42.3% higher NH-N-removal rate compared to the control group. The COD-removal rate was 68.7% throughout the process. Microbial analysis revealed that DRB selectively enriched and , promoting direct interspecies electron transfer (DIET) and methane yield. These findings highlight DRB's potential to enhance AD efficiency and support closed-loop resource utilization.
厌氧消化(AD)因其可持续性以及生产可再生生物能源的潜力,是处理食物垃圾(FW)的首选方法。然而,挥发性脂肪酸(VFA)和氨的积累常常会破坏厌氧消化过程的稳定性,并且管理消化副产物带来了额外的挑战。本研究调查了由消化产物和稻草合成的共热解生物炭(DRB)用于提高甲烷产量和厌氧消化效率的情况。与对照组相比,添加DRB使累积甲烷产量提高了37.1%,提高了VFA转化效率,并实现了高42.3%的NH-N去除率。整个过程的化学需氧量(COD)去除率为68.7%。微生物分析表明,DRB选择性地富集了 和 ,促进了种间直接电子转移(DIET)和甲烷产量。这些发现凸显了DRB在提高厌氧消化效率和支持闭环资源利用方面的潜力。