Suppr超能文献

介入放射学中大型语言模型的提示工程

Prompt Engineering for Large Language Models in Interventional Radiology.

作者信息

Dietrich Nicholas, Bradbury Nicholas C, Loh Christopher

机构信息

Temerty Faculty of Medicine, University of Toronto, 1 King's College Cir, Toronto, Ontario, Canada M5S 1A8.

University of North Dakota School of Medicine and Health Sciences, 1301 N Columbia Rd, Grand Forks, ND, USA 58203.

出版信息

AJR Am J Roentgenol. 2025 May 7. doi: 10.2214/AJR.25.32956.

Abstract

Prompt engineering plays a crucial role in optimizing artificial intelligence (AI) and large language model (LLM) outputs by refining input structure, a key factor in medical applications where precision and reliability are paramount. This Clinical Perspective provides an overview of prompt engineering techniques and their relevance to interventional radiology (IR). It explores key strategies, including zero-shot, one- or few-shot, chain-of-thought, tree-of-thought, self-consistency, and directional stimulus prompting, demonstrating their application in IR-specific contexts. Practical examples illustrate how these techniques can be effectively structured for workplace and clinical use. Additionally, the article discusses best practices for designing effective prompts and addresses challenges in the clinical use of generative AI, including data privacy and regulatory concerns. It concludes with an outlook on the future of generative AI in IR, highlighting advances including retrieval-augmented generation, domain-specific LLMs, and multimodal models.

摘要

提示工程通过优化输入结构在优化人工智能(AI)和大语言模型(LLM)输出方面发挥着关键作用,而输入结构是医学应用中的一个关键因素,在医学应用中精确性和可靠性至关重要。本临床视角概述了提示工程技术及其与介入放射学(IR)的相关性。它探讨了关键策略,包括零样本、单样本或少样本、思维链、思维树、自一致性和定向刺激提示,并展示了它们在IR特定背景下的应用。实际例子说明了如何有效地构建这些技术以用于工作场所和临床。此外,本文讨论了设计有效提示的最佳实践,并解决了生成式AI临床应用中的挑战,包括数据隐私和监管问题。文章最后展望了生成式AI在IR领域的未来,强调了包括检索增强生成、特定领域的LLM和多模态模型等方面的进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验