Suppr超能文献

在北加利福尼亚州基于人工智能的糖尿病视网膜病变检测项目的第二年,针对性干预带来了质量改进。

Targeted Interventions Lead to Quality Improvement in Year 2 of an Artificial Intelligence-Based Diabetic Retinopathy Detection Program in Northern California.

作者信息

Chen Karen M, Zhao Cindy S, Knapp Austen, Dow Eliot, Phadke Anuradha, Tan Marilyn, Desai Kaniksha, Or Christopher, Mahajan Vinit, Do Diana V, Mruthyunjaya Prithvi, Leng Theodore, Myung David

机构信息

Byers Eye Institute at Stanford, Stanford University School of Medicine, Palo Alto, California 94303.

Retinal Consultants Medical Group, Sacramento, CA, USA, 95825.

出版信息

Retina. 2025 Apr 30. doi: 10.1097/IAE.0000000000004499.

Abstract

PURPOSE

This study evaluates the second-year outcomes of an AI-based diabetic retinopathy (DR) detection program (Stanford Teleophthalmology Autonomous Testing and Universal Screening (STATUS)) implemented in primary care and endocrinology clinics in Northern California. We focused on assessing improvements following implementation of an intervention-based framework to increase AI system gradability and patient encounters.

METHODS

A retrospective analysis was conducted involving diabetic patients aged 18 years and older with no prior DR diagnosis or examination in the past year. These patients presented for routine DR screening in primary care or endocrinology clinics. In its second year, the STATUS program expanded to additional sites and introduced an intervention-based framework, including targeted training protocols, to enhance screening accuracy and efficiency. Our study measured AI system gradability and tracked patient encounters over Year 2.

RESULTS

The AI system's gradability increased from 62.3% in Year 1 to 71.2% in Year 2, comparable to non-mydriatic gradability rates observed in clinical trials. Patient encounters increased by 21.9%, indicating expanded reach and improved accessibility. Interventions, including enhanced training protocols and camera utilization reports, effectively improved screening efficiency.

CONCLUSION

The second-year outcomes of the STATUS AI-based DR screening program demonstrate significant improvements in image gradability by the AI system as well as in patient encounter numbers. These findings highlight the potential of interventional methods to continually improve the outcomes of AI-based screening programs and offer a scalable solution to the growing burden of diabetic retinopathy. The success of STATUS supports further integration and expansion of AI-based screening in clinical practice for early detection and management of DR, improving patient outcomes.

摘要

目的

本研究评估了在北加利福尼亚州的初级保健和内分泌诊所实施的基于人工智能的糖尿病视网膜病变(DR)检测项目(斯坦福远程眼科自主检测与通用筛查(STATUS))的第二年成果。我们重点评估了在实施基于干预的框架以提高人工智能系统的可分级性和患者就诊量之后的改善情况。

方法

进行了一项回顾性分析,纳入了年龄在18岁及以上、过去一年未曾被诊断或检查出患有DR的糖尿病患者。这些患者在初级保健或内分泌诊所进行常规DR筛查。在第二年,STATUS项目扩展到了更多地点,并引入了基于干预的框架,包括针对性的培训方案,以提高筛查的准确性和效率。我们的研究测量了人工智能系统的可分级性,并跟踪了第二年的患者就诊量。

结果

人工智能系统的可分级性从第一年的62.3%提高到了第二年的71.2%,与临床试验中观察到的非散瞳可分级率相当。患者就诊量增加了21.9%,表明覆盖面扩大且可及性提高。包括强化培训方案和摄像头使用报告在内的干预措施有效地提高了筛查效率。

结论

基于STATUS人工智能的DR筛查项目的第二年成果表明,人工智能系统在图像可分级性以及患者就诊数量方面都有显著改善。这些发现凸显了干预方法在持续改善基于人工智能的筛查项目成果方面的潜力,并为日益加重的糖尿病视网膜病变负担提供了一种可扩展的解决方案。STATUS的成功支持了在临床实践中进一步整合和扩展基于人工智能的筛查,以早期检测和管理DR,改善患者预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验