Baranova Svetlana V, Zhdanova Polina V, Pestryakov Pavel E, Chernonosov Alexander A, Koval Vladimir V
Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, 630090, Russia.
Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, 630090, Russia.
Biochem Biophys Res Commun. 2025 Jul 1;768:151892. doi: 10.1016/j.bbrc.2025.151892. Epub 2025 Apr 30.
CRISPR-Cas9 and CRISPR-Cas12a are endonuclease systems widely used for genome editing, but their mechanisms of DNA cleavage, particularly in the presence of nucleotide mismatches, remain incompletely understood. This study deals with thermodynamic parameters governing the cleavage of DNA substrates-containing a mismatch in the region complementary to RNA-by Cas9 and Cas12a. Using a series of 55 bp DNA substrates with various mismatches, we investigated the cleavage efficiency, reaction kinetics, and thermodynamic stability of the Cas12a-crRNA complex and compared it with Cas9-sgRNA on the same substrates. Cas12a manifested strict specificity, with a mismatch leading to a significant reduction in cleavage efficiency or to nonspecific trans-cleavage, whereas Cas9 showed higher tolerance to each mismatch, especially in internal and distal regions. Thermodynamic calculations indicated that Cas12a-crRNA complexes are generally stabler with fully complementary DNA but are more destabilized by a mismatch than Cas9-sgRNA complexes are. Molecular dynamics simulations revealed that a mismatch causes greater structural destabilization in Cas12a than in Cas9, correlating with reduced cleavage efficiency. These findings highlight distinct mechanisms of mismatch recognition by Cas9 and Cas12a, provide insights into their enzymatic behavior, and inform the design of more precise genome-editing tools.
CRISPR-Cas9和CRISPR-Cas12a是广泛用于基因组编辑的核酸内切酶系统,但它们的DNA切割机制,特别是在存在核苷酸错配的情况下,仍未完全清楚。本研究探讨了由Cas9和Cas12a切割与RNA互补区域含有错配的DNA底物的热力学参数。使用一系列具有各种错配的55bp DNA底物,我们研究了Cas12a-crRNA复合物的切割效率、反应动力学和热力学稳定性,并在相同底物上与Cas9-sgRNA进行了比较。Cas12a表现出严格的特异性,错配会导致切割效率显著降低或非特异性反式切割,而Cas9对每种错配表现出更高的耐受性,尤其是在内侧和远端区域。热力学计算表明,Cas12a-crRNA复合物与完全互补的DNA一般更稳定,但与Cas9-sgRNA复合物相比,错配会使其更不稳定。分子动力学模拟显示,错配在Cas12a中比在Cas9中引起更大的结构不稳定,这与切割效率降低相关。这些发现突出了Cas9和Cas12a识别错配的不同机制,为它们的酶促行为提供了见解,并为设计更精确的基因组编辑工具提供了依据。