Baranova Svetlana V, Zhdanova Polina V, Golyshev Victor M, Lomzov Alexander A, Pestryakov Pavel E, Chernonosov Alexander A, Koval Vladimir V
Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090, Novosibirsk, Russia.
Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090, Novosibirsk, Russia.
Biochem Biophys Res Commun. 2025 Jan;743:151176. doi: 10.1016/j.bbrc.2024.151176. Epub 2024 Dec 12.
The thermodynamics of interactions between Cas12a, RNA, and DNA are important to understanding the molecular mechanisms governing CRISPR-Cas12a's specificity and function. In this study, we employed isothermal titration calorimetry (ITC) and molecular dynamics (MD) simulations to investigate the binding properties and energetic contributions of Cas12a-crRNA complexes with single-stranded (ssDNA) and double-stranded (dsDNA) DNA substrates. ITC analyses revealed significant thermal effects during the interaction of Cas12a-crRNA with ssDNA but no detectable effects with dsDNA. The binding to ssDNA was characterized by an enthalpy change (ΔH°) of -243 ± 18 kcal/mol and a stoichiometry of ∼0.3, indicating partial binding due to structural hindrances such as intramolecular secondary structures in RNA and DNA. MD simulations further supported these findings, highlighting the stability and dynamic behavior of Cas12a-crRNA complexes with both DNA substrates. Binding free energy calculations (MM-GBSA) revealed stronger stabilization of the Cas12a-crRNA complex by dsDNA compared to ssDNA, likely driven by additional electrostatic interactions and protein-DNA contacts. However, these interactions did not produce measurable heat effects in ITC experiments. The combined experimental and computational findings demonstrate that the CRISPR-Cas12a system's interactions with nucleic acids are predominantly governed by their structural characteristics and conformational flexibility. These results deepen our understanding of the thermodynamic and structural principles underlying Cas12a-mediated target recognition and cleavage.
Cas12a、RNA和DNA之间相互作用的热力学对于理解控制CRISPR-Cas12a特异性和功能的分子机制至关重要。在本研究中,我们采用等温滴定量热法(ITC)和分子动力学(MD)模拟来研究Cas12a-crRNA复合物与单链(ssDNA)和双链(dsDNA)DNA底物的结合特性和能量贡献。ITC分析显示,Cas12a-crRNA与ssDNA相互作用时有显著的热效应,而与dsDNA相互作用时未检测到热效应。与ssDNA的结合以焓变(ΔH°)为-243±18 kcal/mol和化学计量比约为0.3为特征,表明由于RNA和DNA中的分子内二级结构等结构障碍导致部分结合。MD模拟进一步支持了这些发现,突出了Cas12a-crRNA复合物与两种DNA底物的稳定性和动态行为。结合自由能计算(MM-GBSA)显示,与ssDNA相比,dsDNA对Cas12a-crRNA复合物的稳定作用更强,这可能是由额外的静电相互作用和蛋白质-DNA接触驱动的。然而,这些相互作用在ITC实验中未产生可测量的热效应。实验和计算结果相结合表明,CRISPR-Cas12a系统与核酸的相互作用主要受其结构特征和构象灵活性的支配。这些结果加深了我们对Cas12a介导的靶标识别和切割背后的热力学和结构原理的理解。