文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

FTO通过调节NUPR1依赖的铁稳态促进结直肠癌化疗耐药。

FTO facilitates colorectal cancer chemoresistance via regulation of NUPR1-dependent iron homeostasis.

作者信息

Xu Changwei, Shen Tong, Feng Lin, Wang Lei, Li Shisen, Ding Ruxin, Geng Zhi, Fan Minmin, Xiao Tian, Zheng Jianyong, Shen Liangliang, Qu Xuan

机构信息

Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China.

Department of Digestive Surgery, Xi'an International Medical Center, Xi'an, Shaanxi, China.

出版信息

Redox Biol. 2025 Jun;83:103647. doi: 10.1016/j.redox.2025.103647. Epub 2025 Apr 30.


DOI:10.1016/j.redox.2025.103647
PMID:40334546
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12127581/
Abstract

Drug resistance in colorectal cancer (CRC) poses a major challenge for cancer therapy and stands as the primary cause of cancer-related mortality. The N6-methyladenosine (m6A) modification has emerged as a pivotal regulator in cancer biology, yet the precise m6A regulators that propel CRC progression and chemoresistance remain elusive. Our study established a significant correlation between m6A regulatory gene expression profiles and CRC severity. Notably, based on the knockout cellular and mouse model created by CRISPR/Cas9-mediated genome engineering, we identified m6A demethylase FTO emerged as a pivotal orchestrator of CRC chemoresistance through the regulation of NUPR1, a critical transcription factor involved in iron homeostasis via LCN2 and FTH1. Mechanistic study revealed that FTO stabilized NUPR1 mRNA by specifically targeting the +451 m6A site, thereby preventing YTHDF2-mediated degradation of NUPR1 mRNA. Moreover, the simultaneous targeting of FTO and NUPR1 dramatically enhanced the efficacy of chemotherapy in CRC cells. Our findings underscore the potential of modulating the m6A methylome to overcome chemoresistance and highlight the FTO-NUPR1 axis as a critical determinant in CRC pathobiology.

摘要

结直肠癌(CRC)中的耐药性是癌症治疗面临的一项重大挑战,也是癌症相关死亡的主要原因。N6-甲基腺苷(m6A)修饰已成为癌症生物学中的关键调节因子,但推动CRC进展和化疗耐药的确切m6A调节因子仍不清楚。我们的研究建立了m6A调节基因表达谱与CRC严重程度之间的显著相关性。值得注意的是,基于CRISPR/Cas9介导的基因组工程创建的基因敲除细胞和小鼠模型,我们发现m6A去甲基化酶FTO通过调节NUPR1(一种通过LCN2和FTH1参与铁稳态的关键转录因子),成为CRC化疗耐药的关键协调因子。机制研究表明,FTO通过特异性靶向+451 m6A位点稳定NUPR1 mRNA,从而防止YTHDF2介导的NUPR1 mRNA降解。此外,同时靶向FTO和NUPR1可显著增强CRC细胞化疗的疗效。我们的研究结果强调了调节m6A甲基化组以克服化疗耐药性的潜力,并突出了FTO-NUPR1轴是CRC病理生物学的关键决定因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/1ddb8683b1e5/mmcfigs13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/4e84abc90995/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/2edb30dbdced/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/38ab0fbe5333/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/7fa317c2963a/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/c34c2e920add/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/280969255d0b/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/3d1014da3a71/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/04be7d7ea9b2/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/9685aeb00d83/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/cedbcdf68033/mmcfigs1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/7fd13ed93fe6/mmcfigs2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/2a91b35aba08/mmcfigs3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/2f611eaace20/mmcfigs4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/3b775f007d9d/mmcfigs5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/9cd81db554f8/mmcfigs6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/8055b6049a28/mmcfigs7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/a2353c7afc90/mmcfigs8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/169ad89b68a5/mmcfigs9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/175a0c905c20/mmcfigs10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/44dac165986f/mmcfigs11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/851951e4b9c6/mmcfigs12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/1ddb8683b1e5/mmcfigs13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/4e84abc90995/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/2edb30dbdced/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/38ab0fbe5333/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/7fa317c2963a/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/c34c2e920add/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/280969255d0b/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/3d1014da3a71/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/04be7d7ea9b2/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/9685aeb00d83/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/cedbcdf68033/mmcfigs1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/7fd13ed93fe6/mmcfigs2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/2a91b35aba08/mmcfigs3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/2f611eaace20/mmcfigs4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/3b775f007d9d/mmcfigs5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/9cd81db554f8/mmcfigs6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/8055b6049a28/mmcfigs7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/a2353c7afc90/mmcfigs8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/169ad89b68a5/mmcfigs9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/175a0c905c20/mmcfigs10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/44dac165986f/mmcfigs11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/851951e4b9c6/mmcfigs12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb65/12127581/1ddb8683b1e5/mmcfigs13.jpg

相似文献

[1]
FTO facilitates colorectal cancer chemoresistance via regulation of NUPR1-dependent iron homeostasis.

Redox Biol. 2025-6

[2]
RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3.

Mol Cancer. 2019-3-28

[3]
Gene Alterations of N6-Methyladenosine (mA) Regulators in Colorectal Cancer: A TCGA Database Study.

Biomed Res Int. 2020

[4]
N6-methyladenosine demethylase FTO enhances chemo-resistance in colorectal cancer through SIVA1-mediated apoptosis.

Mol Ther. 2023-2-1

[5]
Kinase GSK3β functions as a suppressor in colorectal carcinoma through the FTO-mediated MZF1/c-Myc axis.

J Cell Mol Med. 2021-3

[6]
FTO/IGF2BP2-mediated N6 methyladenosine modification in invasion and metastasis of thyroid carcinoma via CDH12.

Cell Death Dis. 2024-10-8

[7]
microRNA-96 promotes occurrence and progression of colorectal cancer via regulation of the AMPKα2-FTO-m6A/MYC axis.

J Exp Clin Cancer Res. 2020-11-12

[8]
Long noncoding RNA just proximal to X-inactive specific transcript facilitates aerobic glycolysis and temozolomide chemoresistance by promoting stability of PDK1 mRNA in an m6A-dependent manner in glioblastoma multiforme cells.

Cancer Sci. 2021-11

[9]
FTO-mediated SMAD2 m6A modification protects cartilage against Osteoarthritis.

Exp Mol Med. 2024-10

[10]
N 6-Methyladenosine Demethylase FTO Controls Macrophage Homeostasis in Diabetic Vasculopathy.

Diabetes. 2025-1-1

引用本文的文献

[1]
ALKBH5-mediated NPC2 mRNA mA demethylation promotes resistance to oxaliplatin in colorectal cancer.

Funct Integr Genomics. 2025-7-19

本文引用的文献

[1]
FTO inhibition mitigates high-fat diet-induced metabolic disturbances and cognitive decline in SAMP8 mice.

Mol Med. 2025-2-21

[2]
Ferroptosis: the balance between death and survival in colorectal cancer.

Int J Biol Sci. 2024-7-2

[3]
CircPIAS1 promotes hepatocellular carcinoma progression by inhibiting ferroptosis via the miR-455-3p/NUPR1/FTH1 axis.

Mol Cancer. 2024-5-28

[4]
Cancer statistics, 2024.

CA Cancer J Clin. 2024

[5]
Cholesterol homeostasis confers glioma malignancy triggered by hnRNPA2B1-dependent regulation of SREBP2 and LDLR.

Neuro Oncol. 2024-4-5

[6]
FTO-mediated ZNF687 accelerates tumor growth, metastasis, and angiogenesis in colorectal cancer through the Wnt/β-catenin pathway.

Biotechnol Appl Biochem. 2024-4

[7]
Mechanisms controlling cellular and systemic iron homeostasis.

Nat Rev Mol Cell Biol. 2024-2

[8]
Targeting mA reader YTHDF1 augments antitumour immunity and boosts anti-PD-1 efficacy in colorectal cancer.

Gut. 2023-8

[9]
Ferroptosis in colorectal cancer: a future target?

Br J Cancer. 2023-4

[10]
Targeting ferroptosis to treat colorectal cancer.

Trends Cell Biol. 2023-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索