Suppr超能文献

内质网Nogo蛋白驱动AgRP神经元激活及进食行为。

Endoplasmic reticulum Nogo drives AgRP neuronal activation and feeding behavior.

作者信息

Jin Sungho, Yoon Nal Ae, Wei Mian, Worgall Tilla, Rubinelli Luisa, Horvath Tamas L, Min Wei, Diano Nadia, di Lorenzo Annarita, Diano Sabrina

机构信息

Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY 10032, USA.

Department of Chemistry, Columbia University, New York, NY 10027, USA.

出版信息

Cell Metab. 2025 Jun 3;37(6):1400-1412.e8. doi: 10.1016/j.cmet.2025.04.005. Epub 2025 May 6.

Abstract

Lipid sensing in the hypothalamus contributes to the control of feeding and whole-body metabolism. However, the mechanism responsible for this nutrient-sensing process is ill-defined. Here, we show that Nogo-A, encoded by reticulon 4 (Rtn4) gene and associated with brain development and synaptic plasticity, regulates feeding and energy metabolism by controlling lipid metabolism in Agouti-related protein (AgRP) neurons. Nogo-A expression was upregulated in AgRP neurons of fasted mice and was associated with a significant downregulation of enzymes involved in sphingolipid de novo biosynthesis and the upregulation of key enzymes in intracellular lipid transport and fatty acid oxidation. Deletion of Rtn4 in AgRP neurons reduced body weight, ghrelin-induced AgRP activity and food intake, and fasting-induced AgRP activation, together with an increase in ceramide levels. Finally, high-fat-diet-induced obesity induced a significant downregulation of Rtn4 and increased ceramide levels in AgRP neurons, suggesting a role for Nogo in AgRP dysregulation in obesity. Taken together, our data reveal that Nogo-A drives AgRP neuronal activity and associated feeding behavior by controlling mitochondrial function and cellular lipid metabolism.

摘要

下丘脑的脂质感应有助于控制进食和全身代谢。然而,负责这种营养感应过程的机制尚不清楚。在这里,我们表明,由网状蛋白4(Rtn4)基因编码并与大脑发育和突触可塑性相关的Nogo-A,通过控制刺鼠相关蛋白(AgRP)神经元中的脂质代谢来调节进食和能量代谢。在禁食小鼠的AgRP神经元中,Nogo-A表达上调,并且与鞘脂从头生物合成中涉及的酶的显著下调以及细胞内脂质转运和脂肪酸氧化中的关键酶的上调相关。在AgRP神经元中删除Rtn4可降低体重、胃饥饿素诱导的AgRP活性和食物摄入量,以及禁食诱导的AgRP激活,同时神经酰胺水平增加。最后,高脂饮食诱导的肥胖导致Rtn4显著下调,并增加了AgRP神经元中的神经酰胺水平,表明Nogo在肥胖中AgRP失调中起作用。综上所述,我们的数据表明,Nogo-A通过控制线粒体功能和细胞脂质代谢来驱动AgRP神经元活动和相关的进食行为。

相似文献

1
Endoplasmic reticulum Nogo drives AgRP neuronal activation and feeding behavior.
Cell Metab. 2025 Jun 3;37(6):1400-1412.e8. doi: 10.1016/j.cmet.2025.04.005. Epub 2025 May 6.
2
Suppression of GHS-R in AgRP Neurons Mitigates Diet-Induced Obesity by Activating Thermogenesis.
Int J Mol Sci. 2017 Apr 14;18(4):832. doi: 10.3390/ijms18040832.
4
Drp1 is required for AgRP neuronal activity and feeding.
Elife. 2021 Mar 9;10:e64351. doi: 10.7554/eLife.64351.
5
A Small Potassium Current in AgRP/NPY Neurons Regulates Feeding Behavior and Energy Metabolism.
Cell Rep. 2016 Nov 8;17(7):1807-1818. doi: 10.1016/j.celrep.2016.10.044.
6
Ghrelin receptor in agouti-related peptide neurones regulates metabolic adaptation to calorie restriction.
J Neuroendocrinol. 2019 Jul;31(7):e12763. doi: 10.1111/jne.12763. Epub 2019 Jul 9.
7
ROCK1 in AgRP neurons regulates energy expenditure and locomotor activity in male mice.
Endocrinology. 2013 Oct;154(10):3660-70. doi: 10.1210/en.2013-1343. Epub 2013 Jul 24.
8
TXNIP in Agrp neurons regulates adiposity, energy expenditure, and central leptin sensitivity.
J Neurosci. 2012 Jul 18;32(29):9870-7. doi: 10.1523/JNEUROSCI.0353-12.2012.
9
Chronic G signaling in AgRP neurons does not cause obesity.
Proc Natl Acad Sci U S A. 2020 Aug 25;117(34):20874-20880. doi: 10.1073/pnas.2004941117. Epub 2020 Aug 6.
10
Deletion of ATF4 in AgRP Neurons Promotes Fat Loss Mainly via Increasing Energy Expenditure.
Diabetes. 2017 Mar;66(3):640-650. doi: 10.2337/db16-0954. Epub 2016 Dec 19.

引用本文的文献

1
The gut microbiota in cancer immunity and immunotherapy.
Cell Mol Immunol. 2025 Aug 6. doi: 10.1038/s41423-025-01326-2.

本文引用的文献

1
Ceramides in the central control of metabolism.
Trends Endocrinol Metab. 2025 Jan;36(1):11-14. doi: 10.1016/j.tem.2024.06.007. Epub 2024 Jul 6.
2
microRNA-33 controls hunger signaling in hypothalamic AgRP neurons.
Nat Commun. 2024 Mar 8;15(1):2131. doi: 10.1038/s41467-024-46427-0.
4
Mitochondrial morphology controls fatty acid utilization by changing CPT1 sensitivity to malonyl-CoA.
EMBO J. 2023 Jun 1;42(11):e111901. doi: 10.15252/embj.2022111901. Epub 2023 Mar 14.
5
UCP2-dependent redox sensing in POMC neurons regulates feeding.
Cell Rep. 2022 Dec 27;41(13):111894. doi: 10.1016/j.celrep.2022.111894.
6
Nogo-A reduces ceramide de novo biosynthesis to protect from heart failure.
Cardiovasc Res. 2023 Mar 31;119(2):506-519. doi: 10.1093/cvr/cvac108.
7
Highly-multiplexed volumetric mapping with Raman dye imaging and tissue clearing.
Nat Biotechnol. 2022 Mar;40(3):364-373. doi: 10.1038/s41587-021-01041-z. Epub 2021 Oct 4.
9
Drp1 is required for AgRP neuronal activity and feeding.
Elife. 2021 Mar 9;10:e64351. doi: 10.7554/eLife.64351.
10
Ceramides in Metabolism: Key Lipotoxic Players.
Annu Rev Physiol. 2021 Feb 10;83:303-330. doi: 10.1146/annurev-physiol-031620-093815. Epub 2020 Nov 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验