Suppr超能文献

超越CEN.PK - 所选酿酒酵母菌株的并行工程表明,优良的底盘菌株在柠檬烯生产中需要不同的工程方法。

Beyond CEN.PK - parallel engineering of selected S. cerevisiae strains reveals that superior chassis strains require different engineering approaches for limonene production.

作者信息

Zhu Yanmei, Yogiswara Sasha, Willekens Anke, Gérardin Agathe, Lavigne Rob, Goossens Alain, Pinheiro Vitor B, Dai Zongjie, Verstrepen Kevin J

机构信息

VIB - KU Leuven Center for Microbiology, Gaston Geenslaan 1, 3001, Leuven, Belgium; CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001, Leuven, Belgium.

Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 box 2462, Heverlee, 3001, Leuven, Belgium.

出版信息

Metab Eng. 2025 May 5;91:276-289. doi: 10.1016/j.ymben.2025.04.011.

Abstract

Genetically engineered microbes are increasingly utilized to produce a broad range of high-value compounds. However, most studies start with only a very narrow group of genetically tractable type strains that have not been selected for maximum titers or industrial robustness. In this study, we used high-throughput screening and parallel metabolic engineering to identify and optimize Saccharomyces cerevisiae chassis strains for the production of limonene, a monoterpene with applications in flavors, fragrances, and biofuels. We screened 921 genetically and phenotypically distinct S. cerevisiae strains for limonene tolerance and lipid content to identify optimal chassis strains for precision fermentation of limonene. In parallel, we also evaluated 16 different plant limonene synthases. Our results revealed that two of the selected strains showed approximately a 2-fold increase in titers compared to CEN.PK2-1C, the type strain that is often used as a chassis for limonene production, with the same genetic modifications in the mevalonate pathway. Intriguingly, the most effective engineering strategy proved strain-specific. Metabolic profiling revealed that this difference is likely explained by differences in native mevalonate production. Ultimately, by using strain-specific engineering strategies, we achieved 844 mg/L in a new strain, 40 % higher than the titer (605 mg/L) achieved by CEN.PK2-1C. Our findings demonstrate the potential of leveraging genetic diversity in S. cerevisiae for monoterpene bioproduction and highlight the necessity for tailoring metabolic engineering strategies to specific strains.

摘要

基因工程微生物正越来越多地被用于生产各种各样的高价值化合物。然而,大多数研究仅从非常狭窄的一组易于遗传操作的模式菌株开始,这些菌株并非为最高产量或工业稳健性而选择。在本研究中,我们使用高通量筛选和平行代谢工程来鉴定和优化用于生产柠檬烯的酿酒酵母底盘菌株,柠檬烯是一种单萜,可用于香料、香精和生物燃料。我们筛选了921株遗传和表型不同的酿酒酵母菌株,检测其对柠檬烯的耐受性和脂质含量,以鉴定用于柠檬烯精准发酵的最佳底盘菌株。同时,我们还评估了16种不同的植物柠檬烯合酶。我们的结果表明,与通常用作柠檬烯生产底盘的模式菌株CEN.PK2-1C相比,所选的两个菌株在甲羟戊酸途径进行相同基因改造后,产量提高了约2倍。有趣的是,最有效的工程策略因菌株而异。代谢谱分析表明,这种差异可能是由天然甲羟戊酸产量的差异所解释。最终,通过使用菌株特异性工程策略,我们在一个新菌株中实现了844mg/L的产量,比CEN.PK2-1C所达到的产量(605mg/L)高出40%。我们的研究结果证明了利用酿酒酵母中的遗传多样性进行单萜生物生产的潜力,并强调了针对特定菌株定制代谢工程策略的必要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验