Suppr超能文献

解脂耶氏酵母周质β-葡萄糖苷酶的表达使工业木糖发酵酿酒酵母菌株能够高效进行纤维二糖-木糖共发酵。

Expression of a periplasmic β-glucosidase from Yarrowia lipolytica allows efficient cellobiose-xylose co-fermentation by industrial xylose-fermenting Saccharomyces cerevisiae strains.

作者信息

Santos Angela A, Kretzer Leonardo G, Dourado Erika D R, Rosa Carlos A, Stambuk Boris U, Alves Sérgio L

机构信息

Laboratory of Yeast Biochemistry (LabBioLev), Federal University of Fronteira Sul, Campus Chapecó, Chapecó, SC, Brazil.

Laboratory of Yeast Biotechnology and Molecular Biology (LBMBL), Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil.

出版信息

Braz J Microbiol. 2025 Mar;56(1):91-104. doi: 10.1007/s42770-024-01609-2. Epub 2024 Dec 31.

Abstract

This study aimed to compare the effects of cellobiose hydrolysis, whether occurring inside or outside the cell, on the ability of Saccharomyces cerevisiae strains to ferment this sugar and then apply the most effective strategy to industrial S. cerevisiae strains. Firstly, two recombinant laboratory S. cerevisiae strains were engineered: CEN.PK-X-Bgl1YL, expressing the periplasmic β-glucosidase BGL1 from Yarrowia lipolytica; and CEN.PK-X-B7-T2, co-expressing the intracellular β-glucosidase SpBGL7 from Spathaspora passalidarum and the cellobiose transporter MgCBT2 from Meyerozyma guilliermondii. Both engineered strains were able to grown in media with cellobiose and to ferment this disaccharide. However, CEN.PK-X-Bgl1YL, which hydrolyzes cellobiose extracellularly, exhibited faster growth and superior batch fermentation performance. Furthermore, enzymatic and transport activities revealed that sugar uptake was possibly the limiting factor in cellobiose fermentation by CEN.PK-X-B7-T2. Since extracellular hydrolysis with the periplasmic β-glucosidase was more efficient for cellobiose fermentation, we integrated the BGL1 gene into two industrial xylose-fermenting S. cerevisiae strains. The resulting strains (MP-C5H1-Bgl1YL and MP-P5-Bgl1YL) efficiently co-consumed ∼ 22 g L of cellobiose and ∼ 22 g L of xylose in 24 h, achieving high ethanol production levels (∼ 17 g L titer, ∼ 0.50 g L h volumetric productivity, and 0.40 g g ethanol yield). Our findings suggest that the expression of periplasmic β-glucosidases in S. cerevisiae could be an effective strategy to overcome the disaccharide transport problem, thus enabling efficient cellobiose fermentation or even cellobiose-xylose co-fermentation.

摘要

本研究旨在比较纤维二糖水解(无论发生在细胞内还是细胞外)对酿酒酵母菌株发酵这种糖的能力的影响,然后将最有效的策略应用于工业酿酒酵母菌株。首先,构建了两种重组实验室酿酒酵母菌株:CEN.PK-X-Bgl1YL,表达解脂耶氏酵母的周质β-葡萄糖苷酶BGL1;以及CEN.PK-X-B7-T2,共表达来自巴氏孢囊酵母的细胞内β-葡萄糖苷酶SpBGL7和来自季也蒙毕赤酵母的纤维二糖转运蛋白MgCBT2。两种工程菌株都能够在含有纤维二糖的培养基中生长并发酵这种二糖。然而,在细胞外水解纤维二糖的CEN.PK-X-Bgl1YL表现出更快的生长速度和更优异的分批发酵性能。此外,酶活性和转运活性表明,糖摄取可能是CEN.PK-X-B7-T2发酵纤维二糖的限制因素。由于用周质β-葡萄糖苷酶进行细胞外水解对纤维二糖发酵更有效,我们将BGL1基因整合到两种工业木糖发酵酿酒酵母菌株中。所得菌株(MP-C5H1-Bgl1YL和MP-P5-Bgl1YL)在24小时内有效地共同消耗了约22 g/L的纤维二糖和约22 g/L的木糖,实现了较高的乙醇产量(约17 g/L的滴度、约0.50 g/(L·h)的体积产率和0.40 g/g的乙醇产率)。我们的研究结果表明,在酿酒酵母中表达周质β-葡萄糖苷酶可能是克服二糖转运问题的有效策略,从而实现高效的纤维二糖发酵甚至纤维二糖-木糖共发酵。

相似文献

2
Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae.
Bioresour Technol. 2013 Dec;149:525-31. doi: 10.1016/j.biortech.2013.09.082. Epub 2013 Sep 27.
4
Development of an industrial ethanol-producing yeast strain for efficient utilization of cellobiose.
Enzyme Microb Technol. 2011 Jun 10;49(1):105-12. doi: 10.1016/j.enzmictec.2011.02.008. Epub 2011 Mar 3.
5
Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation.
Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):504-9. doi: 10.1073/pnas.1010456108. Epub 2010 Dec 27.
6
Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae.
Appl Environ Microbiol. 2016 May 31;82(12):3631-3639. doi: 10.1128/AEM.00410-16. Print 2016 Jun 15.
7
Metabolic Engineering of with Enhanced Glucose and Xylose Co-utilization for Lignocellulosic Biofuels.
ACS Synth Biol. 2025 Jun 20;14(6):2117-2129. doi: 10.1021/acssynbio.5c00043. Epub 2025 May 13.
8
Co-fermentation of cellobiose and xylose using beta-glucosidase displaying diploid industrial yeast strain OC-2.
Appl Microbiol Biotechnol. 2010 Aug;87(5):1975-82. doi: 10.1007/s00253-010-2714-0. Epub 2010 Jun 16.
10
Enhancing selective itaconic acid synthesis in Yarrowia lipolytica through targeted metabolite transport reprogramming.
Biotechnol Biofuels Bioprod. 2025 Jun 19;18(1):65. doi: 10.1186/s13068-025-02668-9.

本文引用的文献

2
Co-utilization of carbon sources in microorganisms for the bioproduction of chemicals.
Biotechnol Adv. 2024 Jul-Aug;73:108380. doi: 10.1016/j.biotechadv.2024.108380. Epub 2024 May 15.
4
Prospecting and engineering yeasts for ethanol production under inhibitory conditions: an experimental design analysis.
Bioprocess Biosyst Eng. 2023 Aug;46(8):1133-1145. doi: 10.1007/s00449-022-02812-x. Epub 2022 Nov 24.
5
Comparison of Genome and Plasmid-Based Engineering of Multigene Benzylglucosinolate Pathway in Saccharomyces cerevisiae.
Appl Environ Microbiol. 2022 Nov 22;88(22):e0097822. doi: 10.1128/aem.00978-22. Epub 2022 Nov 3.
6
Strategies for Efficient Expression of Heterologous Monosaccharide Transporters in .
J Fungi (Basel). 2022 Jan 15;8(1):84. doi: 10.3390/jof8010084.
9
Pretreatment of lignocellulosic biomass: A review on recent advances.
Bioresour Technol. 2021 Aug;334:125235. doi: 10.1016/j.biortech.2021.125235. Epub 2021 Apr 28.
10
Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives.
J Ind Microbiol Biotechnol. 2020 Oct;47(9-10):623-657. doi: 10.1007/s10295-020-02301-8. Epub 2020 Aug 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验