Nemeth Flora B, Leopold-Kerschbaumer Niklas, Debreceni Diana, Fleischmann Frank, Borbely Krisztian, Mazurencu-Marinescu-Pele David, Bocklitz Thomas, Žigman Mihaela, Kepesidis Kosmas V
Center for Molecular Fingerprinting (CMF), 1093 Budapest, Hungary.
Department of Laser Physics, Ludwig Maximilian University of Munich (LMU), 85748 Garching, Germany.
Anal Chem. 2025 May 20;97(19):10264-10272. doi: 10.1021/acs.analchem.5c00185. Epub 2025 May 7.
This paper presents a solution to the challenge of cross-device model generalization in blood-based infrared spectroscopy. As infrared spectroscopy becomes increasingly popular for analyzing human blood, ensuring that machine learning models trained on one device can be effectively transferred to others is essential. However, variations in device characteristics often reduce model performance when applied across different devices. To address this issue, we propose a straightforward domain adaptation method based on data augmentation incorporating device-specific differences. By expanding the training data to include a broader range of nuances, our approach enhances the model's ability to adapt to the unique characteristics of various devices. We validate the effectiveness of our method through experimental testing on two Fourier-Transform Infrared (FTIR) spectroscopy devices from different research laboratories, demonstrating improved prediction accuracy and reliability.
本文提出了一种解决基于血液的红外光谱中跨设备模型泛化挑战的方法。随着红外光谱在分析人体血液方面越来越受欢迎,确保在一种设备上训练的机器学习模型能够有效地转移到其他设备上至关重要。然而,设备特性的差异在跨不同设备应用时往往会降低模型性能。为了解决这个问题,我们提出了一种基于数据增强的简单域适应方法,该方法纳入了特定于设备的差异。通过扩展训练数据以包括更广泛的细微差别,我们的方法增强了模型适应各种设备独特特性的能力。我们通过在来自不同研究实验室的两台傅里叶变换红外(FTIR)光谱设备上进行实验测试,验证了我们方法的有效性,证明了预测准确性和可靠性的提高。