Hippisley-Cox J, Coupland C A
Queen Mary University of London, London, UK.
University of Oxford, Oxford, UK.
Nat Commun. 2025 May 7;16(1):3660. doi: 10.1038/s41467-025-57990-5.
Cancer prediction algorithms are used in the UK to identify individuals at high probability of having a current, as yet undiagnosed cancer with the intention of improving early diagnosis and treatment. Here we develop and externally validate two diagnostic prediction algorithms to estimate the probability of having cancer for 15 cancer types. The first incorporates multiple predictors including age, sex, deprivation, smoking, alcohol, family history, medical diagnoses and symptoms (both general and cancer-specific symptoms). The second additionally includes commonly used blood tests (full blood count and liver function tests). We use multinomial logistic regression to develop separate equations in men and women to predict the absolute probability of 15 cancer types using a population of 7.46 million adults aged 18 to 84 years in England. We evaluate performance in two separate validation cohorts (total 2.64 million patients in England and 2.74 million from Scotland, Wales and Northern Ireland). The models have improved performance compared with existing models with improved discrimination, calibration, sensitivity and net benefit. These algorithms provide superior prediction estimates in the UK compared with existing scores and could lead to better clinical decision-making and potentially earlier diagnosis of cancer.
在英国,癌症预测算法用于识别目前患有尚未确诊癌症的高概率个体,目的是改善早期诊断和治疗。在此,我们开发并外部验证了两种诊断预测算法,以估计15种癌症类型的患癌概率。第一种算法纳入了多个预测因素,包括年龄、性别、贫困程度、吸烟、饮酒、家族病史、医学诊断和症状(包括一般症状和特定癌症症状)。第二种算法还包括常用的血液检查(全血细胞计数和肝功能检查)。我们使用多项逻辑回归在男性和女性中分别建立方程,以预测15种癌症类型的绝对概率,使用的是英格兰746万年龄在18至84岁的成年人。我们在两个独立的验证队列中评估性能(英格兰共有264万患者,苏格兰、威尔士和北爱尔兰有274万患者)。与现有模型相比,这些模型的性能有所提高,在区分度、校准、敏感性和净效益方面都有所改善。与现有评分相比,这些算法在英国提供了更优的预测估计,可能会带来更好的临床决策,并有可能更早地诊断癌症。