Suppr超能文献

多变量填补在特定原因 Cox 模型中的应用:评估用于估计和预测的方法。

Multiple imputation for cause-specific Cox models: Assessing methods for estimation and prediction.

机构信息

Department of Biomedical Data Sciences, 4501Leiden University Medical Center, Leiden, The Netherlands.

Service de Biostatistique et Information Médicale, 55663Hôpital Saint-Louis, Paris, France.

出版信息

Stat Methods Med Res. 2022 Oct;31(10):1860-1880. doi: 10.1177/09622802221102623. Epub 2022 Jun 5.

Abstract

In studies analyzing competing time-to-event outcomes, interest often lies in both estimating the effects of baseline covariates on the cause-specific hazards and predicting cumulative incidence functions. When missing values occur in these baseline covariates, they may be discarded as part of a complete-case analysis or multiply imputed. In the latter case, the imputations may be performed either compatibly with a substantive model pre-specified as a cause-specific Cox model [substantive model compatible fully conditional specification (SMC-FCS)], or approximately so [multivariate imputation by chained equations (MICE)]. In a large simulation study, we assessed the performance of these three different methods in terms of estimating cause-specific regression coefficients and predicting cumulative incidence functions. Concerning regression coefficients, results provide further support for use of SMC-FCS over MICE, particularly when covariate effects are large and the baseline hazards of the competing events are substantially different. Complete-case analysis also shows adequate performance in settings where missingness is not outcome dependent. With regard to cumulative incidence prediction, SMC-FCS and MICE are performed more similarly, as also evidenced in the illustrative analysis of competing outcomes following a hematopoietic stem cell transplantation. The findings are discussed alongside recommendations for practising statisticians.

摘要

在分析竞争时间事件结果的研究中,人们通常既对估计基线协变量对特定原因的风险的影响感兴趣,也对预测累积发生率函数感兴趣。当这些基线协变量中出现缺失值时,它们可能会作为完整案例分析的一部分被丢弃,或者进行多重插补。在后一种情况下,插补可以与预先指定的特定原因 Cox 模型(特定原因 Cox 模型兼容完全条件指定 (SMC-FCS))兼容地进行,也可以近似地进行(多变量链式方程插补 (MICE))。在一项大型模拟研究中,我们根据估计特定原因回归系数和预测累积发生率函数的情况,评估了这三种不同方法的性能。关于回归系数,结果进一步支持使用 SMC-FCS 替代 MICE,特别是当协变量效应较大且竞争事件的基线风险差异较大时。在缺失值不依赖于结果的情况下,完整案例分析也表现出足够的性能。关于累积发生率预测,SMC-FCS 和 MICE 的性能更相似,在造血干细胞移植后竞争结果的说明性分析中也得到了证明。这些发现与实践统计学家的建议一起进行了讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a056/9523822/a9587167d037/10.1177_09622802221102623-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验