Suppr超能文献

通过改进的扩展映射方法揭示五次扰动格尔季科夫 - 伊万诺夫模型中的多种孤子

Unveiling diverse solitons in the quintic perturbed Gerdjikov-Ivanov model via a modified extended mapping method.

作者信息

Hussein Hisham H, Ahmed Hamdy M, Kandil Shaimaa A, Alexan Wassim

机构信息

School of Mathematical and Computational Sciences, University of Prince Edward Island (UPEI), hosted by Universities of Canada in Egypt, Cairo, 11835, Egypt.

Department of Physics and Engineering Mathematics, Higher Institute of Engineering, El Shorouk Academy, El-Shorouk City, Cairo, Egypt.

出版信息

Sci Rep. 2025 May 7;15(1):15881. doi: 10.1038/s41598-025-97981-6.

Abstract

The quintic perturbed Gerdjikov-Ivanov equation, a non-linear model in optics and quantum field theory, describes the propagation of optical pulses in nonlinear media with quintic nonlinearity and perturbation effects. This study aims to derive exact traveling wave solutions for the quintic perturbed Gerdjikov-Ivanov equation using the modified extended mapping method. The method efficiently generates a broad spectrum of solutions, including bright, dark, periodic, singular periodic, hyperbolic, plane, Weierstrass, and Jacobi elliptic forms, extending the known solution space. Compared to previous techniques, such as the generalized exponential rational function and Kudryashov's methods, the modified extended mapping method provides a more diverse set of analytical solutions with improved computational efficiency. Graphical representations using Mathematica illustrate the physical properties and stability of these solutions, confirming their relevance to optical communication and nonlinear wave phenomena. This work advances the understanding of soliton dynamics in nonlinear media and demonstrates the potential of the modified EM method in solving complex non-linear partial differential equations.

摘要

五次扰动的格尔季科夫 - 伊万诺夫方程是光学和量子场论中的一个非线性模型,它描述了具有五次非线性和扰动效应的非线性介质中光脉冲的传播。本研究旨在使用改进的扩展映射方法推导五次扰动的格尔季科夫 - 伊万诺夫方程的精确行波解。该方法有效地生成了广泛的解,包括亮孤子、暗孤子、周期解、奇异周期解、双曲解、平面解、魏尔斯特拉斯解和雅可比椭圆函数解,扩展了已知的解空间。与先前的技术,如广义指数有理函数法和库德里亚绍夫方法相比,改进的扩展映射方法提供了更多样化的解析解,且计算效率更高。使用Mathematica进行的图形表示说明了这些解的物理性质和稳定性,证实了它们与光通信和非线性波现象的相关性。这项工作推进了对非线性介质中孤子动力学的理解,并展示了改进的扩展映射方法在求解复杂非线性偏微分方程方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a46f/12059029/1077234b72d0/41598_2025_97981_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验