Zhu Jinlong, Wang Shengyi, Li Qingliang
Changchun Normal University, Changchun, 130031, China.
Sci Rep. 2025 May 7;15(1):15962. doi: 10.1038/s41598-025-97347-y.
Accurately predicting global soil moisture (SM) is crucial for sustainable agriculture and water resource management. Recognizing the challenges posed by the heterogeneity of SM's spatiotemporal variability, this study proposes a novel approach that leverages Fourier analysis to decompose the periodic fluctuations in SM, revealing underlying trends and cycles. This approach is integrated with Long Short Term Memory (LSTM) networks to enhance the accuracy of global SM prediction. Fourier analysis transforms time series data of SM into frequencies and amplitudes, capturing its intrinsic periodic characteristics. This transformation reveals both variable and invariant features representing changes within and between periods. By integrating these periodic features with sequence data and leveraging the memory and sequence learning capabilities of LSTM neural networks, the accuracy and reliability of global SM prediction can be enhanced. Our experiments on the LandBench1.0 dataset demonstrate that the proposed model reduces the root mean square error by [Formula: see text] to [Formula: see text] compared to the state-of-the-art methods. This study underscores that the LSTM with periodic features of SM can adapt to the inherent complex spatial-temporal patterns in SM dynamics, especially in scenarios characterized by rapid environmental changes and subtle temporal dynamics.
准确预测全球土壤湿度(SM)对于可持续农业和水资源管理至关重要。认识到土壤湿度时空变异性的异质性所带来的挑战,本研究提出了一种新颖的方法,该方法利用傅里叶分析来分解土壤湿度的周期性波动,揭示潜在趋势和周期。这种方法与长短期记忆(LSTM)网络相结合,以提高全球土壤湿度预测的准确性。傅里叶分析将土壤湿度的时间序列数据转换为频率和振幅,捕捉其内在的周期性特征。这种转换揭示了代表不同时期内和不同时期之间变化的可变和不变特征。通过将这些周期性特征与序列数据相结合,并利用LSTM神经网络的记忆和序列学习能力,可以提高全球土壤湿度预测的准确性和可靠性。我们在LandBench1.0数据集上的实验表明,与现有方法相比,所提出的模型将均方根误差从[公式:见原文]降低到[公式:见原文]。这项研究强调,具有土壤湿度周期性特征的LSTM能够适应土壤湿度动态中固有的复杂时空模式,特别是在环境快速变化和时间动态微妙的情况下。