Suppr超能文献

自注意力 (SA) 时间卷积网络 (SATCN)-长短时记忆神经网络 (SATCN-LSTM):一个用于预测地下水位的高级 Python 代码。

Self-attention (SA) temporal convolutional network (SATCN)-long short-term memory neural network (SATCN-LSTM): an advanced python code for predicting groundwater level.

机构信息

Department of Water Engineering, Semnan University, Semnan, Iran.

Department of Water Science Engineering, Shahrekord University, Shahrekord, Iran.

出版信息

Environ Sci Pollut Res Int. 2023 Aug;30(40):92903-92921. doi: 10.1007/s11356-023-28771-8. Epub 2023 Jul 27.

Abstract

Groundwater level prediction is important for effective water management. Accurately predicting groundwater levels allows decision-makers to make informed decisions about water allocation, groundwater abstraction rates, and groundwater recharge strategies. This study presents a novel model, the self-attention (SA) temporal convolutional network (SATCN)-long short-term memory neural network (SATCN-LSTM), for groundwater level prediction. The SATCN-LSTM model combines the advantages of the SATCN and LSTM models to overcome the limitations of the LSTM model. By utilizing skip connections and self-attention mechanisms, the SATCN model addresses the vanishing gradient problem, identifies relevant data, and captures both short- and long-term dependencies in time series data. By demonstrating the improved performance of the SATCN-LSTM model in terms of mean absolute error and root mean square error (RMSE), and by comparing these results with those reported in previous papers, we have highlighted the advancements and contributions of the proposed model. By improving prediction accuracy, the SATCN-LSTM model enables decision-makers to make informed choices regarding water allocation, groundwater abstraction rates, and drought preparedness. The SATCN-LSTM model contributes to the sustainable and efficient use of groundwater resources by providing reliable information for decision-making processes. The SATCN-LSTM model combines the temporal convolutional network (TCN) architecture with LSTM. TCN is known for its ability to capture short-term dependencies in time series data, while LSTM is effective at capturing long-term dependencies. By integrating both architectures, the SATCN-LSTM model can capture the complex temporal relationships at different scales, leading to improved prediction accuracy. Meteorological data were used to predict GWL. The SATCN-LSTM model outperformed the other models. The SATCN-LSTM model had the lowest mean absolute error (MAE) of 0.09, followed by the self-attention (SA) temporal convolutional network (SATCN) model with an MAE of 0.12. The SALSTM model had an MAE of 0.16, while the TCN-LSTM, temporal convolutional network (TCN), and LSTM models had MAEs of 0.17, 0.22, and 0.23, respectively. The SATCN-LSTM model had the lowest root mean square error of 0.14, followed by SATCN with an RMSE of 0.15. The study results indicated that the SATCN-LSTM model was a robust tool for predicting groundwater level.

摘要

地下水水位预测对于有效的水资源管理至关重要。准确预测地下水水位可以使决策者在水资源分配、地下水开采率和地下水补给策略方面做出明智的决策。本研究提出了一种新的模型,即自注意力(SA)时间卷积网络(SATCN)-长短时记忆神经网络(SATCN-LSTM),用于地下水水位预测。SATCN-LSTM 模型结合了 SATCN 和 LSTM 模型的优点,克服了 LSTM 模型的局限性。通过利用跳跃连接和自注意力机制,SATCN 模型解决了梯度消失问题,识别相关数据,并捕捉时间序列数据中的短期和长期依赖关系。通过展示 SATCN-LSTM 模型在平均绝对误差和均方根误差(RMSE)方面的改进性能,并将这些结果与之前文献中的结果进行比较,我们突出了所提出模型的进步和贡献。通过提高预测精度,SATCN-LSTM 模型使决策者能够在水资源分配、地下水开采率和干旱准备方面做出明智的选择。SATCN-LSTM 模型通过为决策过程提供可靠的信息,为地下水资源的可持续和有效利用做出贡献。SATCN-LSTM 模型将时间卷积网络(TCN)架构与 LSTM 相结合。TCN 以其捕捉时间序列数据中短期依赖关系的能力而闻名,而 LSTM 则擅长捕捉长期依赖关系。通过集成这两种架构,SATCN-LSTM 模型可以捕捉不同尺度的复杂时间关系,从而提高预测精度。气象数据用于预测 GWL。SATCN-LSTM 模型的表现优于其他模型。SATCN-LSTM 模型的平均绝对误差(MAE)最低,为 0.09,其次是自注意力(SA)时间卷积网络(SATCN)模型,MAE 为 0.12。SALSTM 模型的 MAE 为 0.16,而 TCN-LSTM、时间卷积网络(TCN)和 LSTM 模型的 MAE 分别为 0.17、0.22 和 0.23。SATCN-LSTM 模型的均方根误差(RMSE)最低,为 0.14,其次是 SATCN,RMSE 为 0.15。研究结果表明,SATCN-LSTM 模型是一种预测地下水水位的强大工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验