Yan Hui, Xie Fahuan, Long Duo, Long Yunxin, Yu Ping, Chen Hanlin
School of Information Engineering, Suqian University, Suqian, Jiangsu, China.
Jilin Province S&T Innovation Center for Physical Simulation and Security of Water Resources and Electric Power Engineering, Changchun Institute of Technology, Changchun, Jilin, China.
PeerJ Comput Sci. 2024 Jun 13;10:e2112. doi: 10.7717/peerj-cs.2112. eCollection 2024.
Precise prediction of irrigation volumes is crucial in modern agriculture. This study proposes an optimized long short-term memory (LSTM) model-based irrigation prediction method that combines bidirectional LSTM networks. The model provides farmers with more precise irrigation management decisions, facilitating optimal utilization of water resources and effective crop production management. This proposed model aims to fully exploit spatio-temporal features and sequence dependencies to enhance prediction accuracy and reliability. We aim to fully leverage crop irrigation volumes' spatio-temporal features and sequence dependencies to improve prediction accuracy and reliability. First, this study adopts a bidirectional LSTM (BiLSTM) model to simulate the temporal features of irrigation volumes and learn the sequential dependencies of crop growth data from historical records. Then, this study passes the irrigation volume data through a convolutional neural network (CNN) model to extract spatial features and capture correlations among various features such as temperature, precipitation, and wind speed. Our prediction performance significantly improved after incorporating an attention mechanism that involves weighting features and enhancing focus on crucial aspects. The proposed BiLSTM-CNN-Attention approach is used to predict irrigation volume for spring corn in significant irrigation areas in Jilin Province, China. The results demonstrate that the proposed method surpasses recurrent neural network (RNN), CNN, LSTM, BiLSTM, and BiLSTM-CNN methods in terms of mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE) (0.000004, 0.005968, 0.004599), and R (0.9749), making a superior solution for predicting the volume of crop irrigation.
精确预测灌溉量在现代农业中至关重要。本研究提出了一种基于优化长短期记忆(LSTM)模型的灌溉预测方法,该方法结合了双向LSTM网络。该模型为农民提供了更精确的灌溉管理决策,有助于水资源的优化利用和有效的作物生产管理。该模型旨在充分利用时空特征和序列依赖性,以提高预测的准确性和可靠性。我们旨在充分利用作物灌溉量的时空特征和序列依赖性,以提高预测的准确性和可靠性。首先,本研究采用双向LSTM(BiLSTM)模型来模拟灌溉量的时间特征,并从历史记录中学习作物生长数据的序列依赖性。然后,本研究将灌溉量数据通过卷积神经网络(CNN)模型,以提取空间特征并捕捉温度、降水和风速等各种特征之间的相关性。在纳入一种涉及对特征加权并增强对关键方面关注的注意力机制后,我们的预测性能显著提高。所提出的BiLSTM-CNN-注意力方法用于预测中国吉林省重要灌溉区春玉米的灌溉量。结果表明,所提出的方法在均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)(0.000004、0.005968、0.004599)和R(0.9749)方面超过了递归神经网络(RNN)、CNN、LSTM、BiLSTM和BiLSTM-CNN方法,是预测作物灌溉量的一种优越解决方案。