Carey Ashley B, Ashenden Alex, Köper Ingo
Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia.
Biophys Rev. 2022 Mar 7;14(1):111-143. doi: 10.1007/s12551-021-00913-7. eCollection 2022 Feb.
The complex composition of bacterial membranes has a significant impact on the understanding of pathogen function and their development towards antibiotic resistance. In addition to the inherent complexity and biosafety risks of studying biological pathogen membranes, the continual rise of antibiotic resistance and its significant economical and clinical consequences has motivated the development of numerous in vitro model membrane systems with tuneable compositions, geometries, and sizes. Approaches discussed in this review include liposomes, solid-supported bilayers, and computational simulations which have been used to explore various processes including drug-membrane interactions, lipid-protein interactions, host-pathogen interactions, and structure-induced bacterial pathogenesis. The advantages, limitations, and applicable analytical tools of all architectures are summarised with a perspective for future research efforts in architectural improvement and elucidation of resistance development strategies and membrane-targeting antibiotic mechanisms.
The online version contains supplementary material available at 10.1007/s12551-021-00913-7.
细菌膜的复杂组成对理解病原体功能及其对抗生素耐药性的发展具有重大影响。除了研究生物病原体膜存在固有的复杂性和生物安全风险外,抗生素耐药性的不断上升及其重大的经济和临床后果促使人们开发了许多具有可调节组成、几何形状和尺寸的体外模型膜系统。本综述中讨论的方法包括脂质体、固体支持双层膜和计算模拟,这些方法已被用于探索各种过程,包括药物 - 膜相互作用、脂质 - 蛋白质相互作用、宿主 - 病原体相互作用以及结构诱导的细菌发病机制。总结了所有结构的优点、局限性和适用的分析工具,并对未来在结构改进以及阐明耐药性发展策略和膜靶向抗生素机制方面的研究工作进行了展望。
在线版本包含可在10.1007/s12551-021-00913-7获取的补充材料。