Lee Soh-Yeon, Lee Sully, Kim Se-Hoon, Chang HyeSun, Cho Won-Yang, Ryu Min-Ok, Choi Jihye, Yoon Hwa-Young, Seo Kyoung-Won
Department of Veterinary Clinical Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
Smartsound Corporation, Seoul, Korea.
BMC Vet Res. 2025 May 8;21(1):326. doi: 10.1186/s12917-025-04802-z.
Myxomatous mitral valve disease (MMVD) represents the most prevalent cardiac disorder in dogs, frequently resulting in mitral regurgitation (MR) and congestive heart failure. Although echocardiography is the gold standard for diagnosis, it is an expensive tool that involves significant clinical training to ensure consistent application. Deep learning models offer an innovative approach to assessing MR using digital stethoscopic recordings, enabling early screening and precise prediction. Thus, in this study, we evaluated the effectiveness of a convolutional neural network 6 (CNN6) in providing an objective alternative to traditional methods for assessing MR. This study, conducted at the Seoul National University Veterinary Medicine Teaching Hospital, included 460 dogs with MMVD, classified according to the American College of Veterinary Internal Medicine guidelines. Phonocardiogram signals were recorded using digital stethoscopes and analyzed using the deep models CNN6, patch-mix audio spectrogram transformer (PaSST), and residual neural network (ResNET38), which were trained to categorize MR severity into mild, moderate, and severe based on MINE score. Performance metrics were calculated to evaluate model effectiveness.
The CNN6-Fbank model achieved an accuracy of 94.12% [95% confidence interval (CI): 94.11-93.12], specificity of 97.30% (95% CI: 97.30-97.34), sensitivity of 94.12% (95% CI: 93.74-94.50), precision of 92.63% (95% CI: 92.29-92.97), and F1 score of 93.32% (95% CI: 93.05-93.59), outperforming the PaSST and ResNet38 models overall and demonstrating robust performance across most metrics.
Deep learning models, particularly CNN6, can effectively assess MR severity in dogs with MMVD using digital stethoscope recordings. This approach provides a rapid, noninvasive, and reliable adjunct to echocardiography, potentially enhancing diagnosis and outcomes. Future studies should focus on broader clinical validation and real-time application of this technology.
黏液瘤样二尖瓣疾病(MMVD)是犬类中最常见的心脏疾病,常导致二尖瓣反流(MR)和充血性心力衰竭。虽然超声心动图是诊断的金标准,但它是一种昂贵的工具,需要大量临床培训以确保一致应用。深度学习模型提供了一种使用数字听诊记录评估MR的创新方法,能够进行早期筛查和精确预测。因此,在本研究中,我们评估了卷积神经网络6(CNN6)在为评估MR的传统方法提供客观替代方案方面的有效性。这项在首尔国立大学兽医学院教学医院进行的研究纳入了460只患有MMVD的犬,根据美国兽医内科学院指南进行分类。使用数字听诊器记录心音图信号,并使用深度模型CNN6、补丁混合音频频谱图变压器(PaSST)和残差神经网络(ResNET38)进行分析,这些模型经过训练,根据MINE评分将MR严重程度分为轻度、中度和重度。计算性能指标以评估模型有效性。
CNN6-Fbank模型的准确率为94.12%[95%置信区间(CI):94.11 - 93.12],特异性为97.30%(95% CI:97.30 - 97.34),敏感性为94.12%(95% CI:93.74 - 94.50),精确率为92.63%(95% CI:92.29 - 92.97),F1分数为93.32%(95% CI:93.05 - 93.59),总体上优于PaSST和ResNet38模型,并且在大多数指标上表现出稳健性能。
深度学习模型,特别是CNN6,能够使用数字听诊记录有效评估患有MMVD的犬的MR严重程度。这种方法为超声心动图提供了一种快速、无创且可靠的辅助手段,可能会改善诊断和治疗结果。未来的研究应侧重于该技术更广泛的临床验证和实时应用。