Suppr超能文献

基于金属有机框架辅助造粒法的生物质衍生多孔碳制备及其增强的碳捕获性能研究

Study on the Preparation of Biomass-Derived Porous Carbon and Enhanced Carbon Capture Performance via MOF-Assisted Granulation.

作者信息

Yue Miao, Lu Hao, Liu Huachen

机构信息

Laboratory of Energy Carbon Neutrality, School of Electrical Engineering, Xinjiang University, Urumqi 830047, China.

Engineering Research Center of Northwest Energy Carbon Neutrality, Ministry of Education, Ruoqiang Energy Industry Research Institute, Urumgi 830047, China.

出版信息

Langmuir. 2025 May 20;41(19):12078-12088. doi: 10.1021/acs.langmuir.5c00804. Epub 2025 May 7.

Abstract

Biomass porous carbon materials have a high specific surface area and a rich pore structure, making them promising CO capture materials. However, the complexity of biomass composition and microstructure may lead to poor reproducibility in the quality of biomass-derived porous carbon. Developing reliable methods for preparing biomass-derived porous carbon is crucial. This study is the first to extract plant fibers from rice straw using an alkaline method and successfully prepare a nitrogen-doped porous carbon material from this raw material. However, similar to most porous carbons used directly for carbon dioxide capture, this material faces challenges in engineering applications, such as complex powder properties, high energy consumption, and significant losses. Here, we further explore the metal-organic framework (MOF)-assisted granulation method to convert porous carbon into carbon microspheres. This method not only enhances the mechanical properties of the material but also compensates for the loss of adsorption capacity during the granulation process, thereby significantly improving the application prospects of biomass porous carbon in the field of carbon capture. This study evaluated in detail their carbon dioxide adsorption capacity and particle compressive strength. The results showed that the porous carbon microspheres doped with Co-MOF-74 exhibited high CO uptake at 1 bar, up to 3.87 mmol g at 25 °C and 3.15 mmol g at 40 °C. In addition, the particle strength of porous carbon microspheres can be increased by more than five times, which is attributed to the crucial role of Co-MOF-74 doping in regulating the pore structure. In this study, we report that an unprecedented design of biomass porous carbon microspheres can provide a solution to the particle agglomeration and reactor clogging problems caused by the complex powder properties of porous carbon and significantly expand the application scenarios of biomass porous carbon in the field of carbon capture.

摘要

生物质多孔碳材料具有高比表面积和丰富的孔隙结构,使其成为有前景的二氧化碳捕获材料。然而,生物质组成和微观结构的复杂性可能导致生物质衍生多孔碳质量的可重复性较差。开发可靠的制备生物质衍生多孔碳的方法至关重要。本研究首次采用碱性方法从稻草中提取植物纤维,并成功地从该原料制备出氮掺杂多孔碳材料。然而,与大多数直接用于二氧化碳捕获的多孔碳类似,这种材料在工程应用中面临挑战,如复杂的粉末性质、高能耗和显著的损失。在此,我们进一步探索金属有机框架(MOF)辅助造粒法将多孔碳转化为碳微球。该方法不仅增强了材料的机械性能,还弥补了造粒过程中吸附容量的损失,从而显著提高了生物质多孔碳在碳捕获领域的应用前景。本研究详细评估了它们的二氧化碳吸附容量和颗粒抗压强度。结果表明,掺杂Co-MOF-74的多孔碳微球在1 bar下表现出高的二氧化碳吸附量,在25℃时高达3.87 mmol/g,在40℃时为3.15 mmol/g。此外,多孔碳微球的颗粒强度可提高五倍以上,这归因于Co-MOF-74掺杂在调节孔隙结构中所起的关键作用。在本研究中,我们报道了一种前所未有的生物质多孔碳微球设计,可解决由多孔碳复杂粉末性质引起的颗粒团聚和反应器堵塞问题,并显著扩大生物质多孔碳在碳捕获领域的应用场景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验