Huang Li, Gao Rui, Qiu Yunsheng, Zheng Jian, Zhang Wenjing, Zheng Lirong, Bai Yunfeng, Hu Zhongbo, Zhang Tianran, Liu Xiangfeng
Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
Inorg Chem. 2025 May 19;64(19):9703-9714. doi: 10.1021/acs.inorgchem.5c00902. Epub 2025 May 8.
Transition metal sulfides (TMSs) are promising noble-metal-free electrocatalysts for electrochemical water splitting due to their distinctive physical and chemical properties, but they usually undergo complicated structure reconfiguration during the oxygen evolution reaction (OER). Precisely controlling the reconfiguration of TMSs for in situ generation of high-activity real active sites still remains a great challenge. Herein, we propose to in situ reconfigure heterostructure active-sites on transition metal sulfides via heterojunction engineering and achieve high OER performances on (Ni,Fe)S/MoS catalysts. The continuous leaching of Mo and S during electrooxidation induces the reconfiguration, and the strong electronic interaction of (Ni,Fe)S and MoS generates the special Ni(OH)/NiOOH/FeOOH heterostructure sites via an asynchronous reconfiguration of Fe and Ni. The (Ni,Fe)S/MoS heterostructure catalyst therefore exhibits excellent OER activity (a small overpotential of 228 mV at 100 mA cm) and a low voltage in an alkaline water electrolyzer (1.44 V at 10 mA cm), outperforming the homogeneous Mo-free NiFe sulfide catalysts with conventional reconfiguration of Ni-doped FeOOH. This work sheds light on the precise structures design under complicated electrochemical reconstruction and broadens the horizon of reconstruction chemistry to design low-cost and efficient electrocatalysts.
过渡金属硫化物(TMSs)因其独特的物理和化学性质,是用于电化学水分解的有前景的无贵金属电催化剂,但它们在析氧反应(OER)过程中通常会经历复杂的结构重构。精确控制TMSs的重构以原位生成高活性的真实活性位点仍然是一个巨大的挑战。在此,我们提出通过异质结工程原位重构过渡金属硫化物上的异质结构活性位点,并在(Ni,Fe)S/MoS催化剂上实现了高析氧反应性能。电氧化过程中Mo和S的持续浸出诱导了重构,并且(Ni,Fe)S和MoS之间的强电子相互作用通过Fe和Ni的异步重构产生了特殊的Ni(OH)/NiOOH/FeOOH异质结构位点。因此,(Ni,Fe)S/MoS异质结构催化剂表现出优异的析氧反应活性(在100 mA cm时过电位低至228 mV)以及在碱性水电解槽中具有低电压(在10 mA cm时为1.44 V),优于具有传统Ni掺杂FeOOH重构的均相无Mo的NiFe硫化物催化剂。这项工作为复杂电化学重构下的精确结构设计提供了思路,并拓宽了重构化学的视野以设计低成本且高效的电催化剂。