Suppr超能文献

对比等变自监督学习改善了与灵长类动物颞下视觉区域的对齐。

Contrastive-Equivariant Self-Supervised Learning Improves Alignment with Primate Visual Area IT.

作者信息

Yerxa Thomas, Feather Jenelle, Simoncelli Eero P, Chung SueYeon

机构信息

Center for Neural Science, New York University.

Center for Computational Neuroscience, Flatiron Institute, Simons Foundation.

出版信息

Adv Neural Inf Process Syst. 2024;37:96045-96070.

Abstract

Models trained with self-supervised learning objectives have recently matched or surpassed models trained with traditional supervised object recognition in their ability to predict neural responses of object-selective neurons in the primate visual system. A self-supervised learning objective is arguably a more biologically plausible organizing principle, as the optimization does not require a large number of labeled examples. However, typical self-supervised objectives may result in network representations that are overly invariant to changes in the input. Here, we show that a representation with structured variability to input transformations is better aligned with known features of visual perception and neural computation. We introduce a novel framework for converting standard invariant SSL losses into "contrastive-equivariant" versions that encourage preservation of input transformations without supervised access to the transformation parameters. We demonstrate that our proposed method systematically increases the ability of models to predict responses in macaque inferior temporal cortex. Our results demonstrate the promise of incorporating known features of neural computation into task-optimization for building better models of visual cortex.

摘要

最近,使用自监督学习目标训练的模型在预测灵长类视觉系统中对象选择性神经元的神经反应能力方面,已经达到或超过了使用传统监督对象识别训练的模型。自监督学习目标可以说是一种更符合生物学原理的组织原则,因为优化过程不需要大量带标签的示例。然而,典型的自监督目标可能会导致网络表征对输入变化过度不变。在这里,我们表明,具有结构化可变性的输入变换表征与视觉感知和神经计算的已知特征更相符。我们引入了一个新颖的框架,将标准不变的自监督学习损失转换为“对比等变”版本,该版本鼓励在无监督访问变换参数的情况下保留输入变换。我们证明,我们提出的方法系统地提高了模型预测猕猴颞下皮质反应的能力。我们的结果表明,将神经计算的已知特征纳入任务优化以构建更好的视觉皮层模型具有前景。

相似文献

2
Mutual Information Driven Equivariant Contrastive Learning for 3D Action Representation Learning.
IEEE Trans Image Process. 2024;33:1883-1897. doi: 10.1109/TIP.2024.3372451. Epub 2024 Mar 12.
5
Learning Generalized Transformation Equivariant Representations Via AutoEncoding Transformations.
IEEE Trans Pattern Anal Mach Intell. 2022 Apr;44(4):2045-2057. doi: 10.1109/TPAMI.2020.3029801. Epub 2022 Mar 4.
6
Boundary-aware information maximization for self-supervised medical image segmentation.
Med Image Anal. 2024 May;94:103150. doi: 10.1016/j.media.2024.103150. Epub 2024 Mar 28.
7
Transformation-invariant visual representations in self-organizing spiking neural networks.
Front Comput Neurosci. 2012 Jul 25;6:46. doi: 10.3389/fncom.2012.00046. eCollection 2012.
8
Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation.
Med Image Anal. 2023 Jul;87:102792. doi: 10.1016/j.media.2023.102792. Epub 2023 Mar 11.
9
A Generic Self-Supervised Framework of Learning Invariant Discriminative Features.
IEEE Trans Neural Netw Learn Syst. 2024 Sep;35(9):12938-12952. doi: 10.1109/TNNLS.2023.3265607. Epub 2024 Sep 3.
10
Semi-supervised abdominal multi-organ segmentation by object-redrawing.
Med Phys. 2024 Nov;51(11):8334-8347. doi: 10.1002/mp.17364. Epub 2024 Aug 21.

本文引用的文献

3
Many but not all deep neural network audio models capture brain responses and exhibit correspondence between model stages and brain regions.
PLoS Biol. 2023 Dec 13;21(12):e3002366. doi: 10.1371/journal.pbio.3002366. eCollection 2023 Dec.
4
Model metamers reveal divergent invariances between biological and artificial neural networks.
Nat Neurosci. 2023 Nov;26(11):2017-2034. doi: 10.1038/s41593-023-01442-0. Epub 2023 Oct 16.
5
Linear Classification of Neural Manifolds with Correlated Variability.
Phys Rev Lett. 2023 Jul 14;131(2):027301. doi: 10.1103/PhysRevLett.131.027301.
6
A self-supervised domain-general learning framework for human ventral stream representation.
Nat Commun. 2022 Jan 25;13(1):491. doi: 10.1038/s41467-022-28091-4.
7
Primary visual cortex straightens natural video trajectories.
Nat Commun. 2021 Oct 13;12(1):5982. doi: 10.1038/s41467-021-25939-z.
8
Unsupervised neural network models of the ventral visual stream.
Proc Natl Acad Sci U S A. 2021 Jan 19;118(3). doi: 10.1073/pnas.2014196118.
9
Integrative Benchmarking to Advance Neurally Mechanistic Models of Human Intelligence.
Neuron. 2020 Nov 11;108(3):413-423. doi: 10.1016/j.neuron.2020.07.040. Epub 2020 Sep 11.
10
Convolutional Neural Networks as a Model of the Visual System: Past, Present, and Future.
J Cogn Neurosci. 2021 Sep 1;33(10):2017-2031. doi: 10.1162/jocn_a_01544.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验