Liu Muhao, Qi Chenyang, Bao Shunxing, Liu Quan, Deng Ruining, Wang Yu, Zhao Shilin, Yang Haichun, Huo Yuankai
Department of Computer Science, Vanderbilt University, Nashville, TN, USA.
Department of Nephrology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12933. doi: 10.1117/12.3006865. Epub 2024 Apr 3.
The segmentation of kidney layer structures, including cortex, outer stripe, inner stripe, and inner medulla within human kidney whole slide images (WSI) plays an essential role in automated image analysis in renal pathology. However, the current manual segmentation process proves labor-intensive and infeasible for handling the extensive digital pathology images encountered at a large scale. In response, the realm of digital renal pathology has seen the emergence of deep learning-based methodologies. However, very few, if any, deep learning based approaches have been applied to kidney layer structure segmentation. Addressing this gap, this paper assesses the feasibility of performing deep learning based approaches on kidney layer structure segmetnation. This study employs the representative convolutional neural network (CNN) and Transformer segmentation approaches, including Swin-Unet, Medical-Transformer, TransUNet, U-Net, PSPNet, and DeepLabv3+. We quantitatively evaluated six prevalent deep learning models on renal cortex layer segmentation using mice kidney WSIs. The empirical results stemming from our approach exhibit compelling advancements, as evidenced by a decent Mean Intersection over Union (mIoU) index. The results demonstrate that Transformer models generally outperform CNN-based models. By enabling a quantitative evaluation of renal cortical structures, deep learning approaches are promising to empower these medical professionals to make more informed kidney layer segmentation.
在人类肾脏全切片图像(WSI)中对肾层结构进行分割,包括皮质、外髓质带、内髓质带和肾髓质,在肾脏病理学的自动图像分析中起着至关重要的作用。然而,目前的手动分割过程被证明是劳动密集型的,并且对于处理大规模遇到的大量数字病理图像来说是不可行的。作为回应,数字肾脏病理学领域出现了基于深度学习的方法。然而,基于深度学习的方法应用于肾层结构分割的情况非常少,如果有的话。为了填补这一空白,本文评估了基于深度学习的方法对肾层结构进行分割的可行性。本研究采用了具有代表性的卷积神经网络(CNN)和Transformer分割方法,包括Swin-Unet、Medical-Transformer、TransUNet、U-Net、PSPNet和DeepLabv3+。我们使用小鼠肾脏WSI对六种流行的深度学习模型进行了肾皮质层分割的定量评估。我们方法得出的实证结果显示出令人信服的进展,平均交并比(mIoU)指标就证明了这一点。结果表明,Transformer模型通常优于基于CNN的模型。通过对肾皮质结构进行定量评估,深度学习方法有望使这些医学专业人员能够做出更明智的肾层分割。