Suppr超能文献

迈向使用贝叶斯混合模型的可解释预期目标建模。

Toward interpretable expected goals modeling using Bayesian mixed models.

作者信息

Iapteff Loïc, Le Coz Sebastian, Rioland Maxime, Houde Titouan, Carling Christopher, Imbach Frank

机构信息

Seenovate, Montpellier, France.

Université de Lyon, Lyon2, Bron, France.

出版信息

Front Sports Act Living. 2025 Apr 23;7:1504362. doi: 10.3389/fspor.2025.1504362. eCollection 2025.

Abstract

Empowered by technological progress, sports teams and bookmakers strive to understand relationships between player and team activity and match outcomes. For this purpose, the probability of an event to succeed (e.g., the probability of a goal to be scored, namely, xG for eXpected Goals) provides insightful information on team and player performance and helps statistical and machine learning approaches predict match outcomes. However, recent approaches require powerful but complex models that need more inherent interpretability for practitioners. This study uses a Bayesian generalized linear mixed-effects model to introduce a simple and interpretable xG modeling approach. The model provided similar performance when compared to the StatsBomb model (property of the StatsBomb company) using only seven variables relating to shot type and position, and surrounding opponents (AUC = 0.781 and 0.801, respectively). Pre-trained models through transfer learning are suitable for identifying teams' strengths and weaknesses using small sample sizes and enable interpretation of the model's predictions.

摘要

在技术进步的推动下,运动队和博彩公司致力于理解球员与球队活动及比赛结果之间的关系。为此,事件成功的概率(例如进球得分的概率,即预期进球xG)为球队和球员表现提供了有洞察力的信息,并有助于统计和机器学习方法预测比赛结果。然而,最近的方法需要强大但复杂的模型,而从业者需要这些模型具有更强的内在可解释性。本研究使用贝叶斯广义线性混合效应模型引入一种简单且可解释的预期进球建模方法。与StatsBomb模型(StatsBomb公司所有)相比,该模型仅使用与射门类型、位置以及周围对手相关的七个变量时,表现相似(AUC分别为0.781和0.801)。通过迁移学习进行预训练的模型适用于使用小样本量识别球队的优势和劣势,并能够解释模型的预测结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a9d/12055760/065e310eaa9d/fspor-07-1504362-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验