Suppr超能文献

默认设置的风险:关于在小样本情况下使用贝叶斯结构方程模型时默认先验的影响的教程

Dangers of the Defaults: A Tutorial on the Impact of Default Priors When Using Bayesian SEM With Small Samples.

作者信息

Smid Sanne C, Winter Sonja D

机构信息

Department of Methodology and Statistics, Utrecht University, Utrecht, Netherlands.

Department of Psychological Sciences, University of California, Merced, Merced, CA, United States.

出版信息

Front Psychol. 2020 Dec 11;11:611963. doi: 10.3389/fpsyg.2020.611963. eCollection 2020.

Abstract

When Bayesian estimation is used to analyze Structural Equation Models (SEMs), prior distributions need to be specified for all parameters in the model. Many popular software programs offer default prior distributions, which is helpful for novel users and makes Bayesian SEM accessible for a broad audience. However, when the sample size is small, those prior distributions are not always suitable and can lead to untrustworthy results. In this tutorial, we provide a non-technical discussion of the risks associated with the use of default priors in small sample contexts. We discuss how default priors can unintentionally behave as highly informative priors when samples are small. Also, we demonstrate an online educational Shiny app, in which users can explore the impact of varying prior distributions and sample sizes on model results. We discuss how the Shiny app can be used in teaching; provide a reading list with literature on how to specify suitable prior distributions; and discuss guidelines on how to recognize (mis)behaving priors. It is our hope that this tutorial helps to spread awareness of the importance of specifying suitable priors when Bayesian SEM is used with small samples.

摘要

当使用贝叶斯估计来分析结构方程模型(SEM)时,需要为模型中的所有参数指定先验分布。许多流行的软件程序提供默认的先验分布,这对新手很有帮助,并使贝叶斯结构方程模型能够为广大受众所用。然而,当样本量较小时,这些先验分布并不总是合适的,可能会导致不可靠的结果。在本教程中,我们将对在小样本情况下使用默认先验的相关风险进行非技术性讨论。我们将讨论当样本量较小时,默认先验如何会无意中表现为高度信息性先验。此外,我们展示了一个在线教育Shiny应用程序,用户可以在其中探索不同先验分布和样本量对模型结果的影响。我们将讨论如何在教学中使用Shiny应用程序;提供一份关于如何指定合适先验分布的文献阅读清单;并讨论如何识别行为不当(或正常)先验的指导方针。我们希望本教程有助于提高人们对在小样本情况下使用贝叶斯结构方程模型时指定合适先验的重要性的认识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4172/7759471/065f1b310cea/fpsyg-11-611963-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验