Suppr超能文献

基于图形的过程模型作为高效数据驱动替代方案的基础——加速材料开发过程。

Graph-based process models as basis for efficient data-driven surrogates - expediting the material development process.

作者信息

Gerritzen Johannes, Hornig Andreas, Gude Maik

机构信息

Institute of Lightweight Engineering and Polymer Technology (ILK), TUD Dresden University of Technology, Holbeinstr. 3, Dresden, 01307, Germany.

Center for Scalable Data Analytics and Artificial Intelligence Dresden/Leipzig (ScaDS.AI), TUD Dresden University of Technology, Chemnitzer Str. 46b, Dresden, 01187, Germany.

出版信息

Comput Struct Biotechnol J. 2025 Apr 24;29:149-155. doi: 10.1016/j.csbj.2025.04.018. eCollection 2025.

Abstract

Shorter development cycles, increasing complexity and cost pressure are driving the need for more efficient development processes. Especially in the field of material development, the long and costly experiments are a major bottleneck. To address this bottleneck, data-driven models supporting the decision making process have recently gained popularity. However, such models require a structured representation of the development process to allow an efficient training. In this work, a formalism for deriving an efficient representation of material development processes (MDPs) is proposed, and demonstrated on the development of a high modulus steel (HMS). The formalism is based on the combination of graph-based process models and the recently proposed concept of "flowthings" [1]. This allows to efficiently derive a directed acyclic graph (DAG) representation of the MDP with the acquired data. From this, a database for subsequent training of surrogate models is derived, on which several black box models for the MDP are trained. Best-in-class models are chosen based on the root mean squared error (RMSE) on the test set and subsequently used for the inverse optimization of the MDP to maximize the specific modulus while meeting additional design constraints. This showcases the potential of the proposed formalism to accelerate the MDP through data-driven modeling.

摘要

更短的开发周期、不断增加的复杂性和成本压力促使人们需要更高效的开发流程。特别是在材料开发领域,漫长且成本高昂的实验是一个主要瓶颈。为了解决这一瓶颈,支持决策过程的数据驱动模型最近受到了广泛关注。然而,此类模型需要开发过程的结构化表示,以便进行高效训练。在这项工作中,提出了一种用于推导材料开发过程(MDP)高效表示的形式化方法,并在高模量钢(HMS)的开发中进行了演示。该形式化方法基于基于图的过程模型与最近提出的“流事物”概念[1]的结合。这使得能够利用获取的数据高效地推导MDP的有向无环图(DAG)表示。由此,导出一个用于后续代理模型训练的数据库,并在该数据库上训练了多个用于MDP的黑箱模型。基于测试集上的均方根误差(RMSE)选择最佳模型,随后将其用于MDP的逆优化,以在满足其他设计约束的同时最大化比模量。这展示了所提出的形式化方法通过数据驱动建模加速MDP的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0aa/12056385/2e5bd504cd7e/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验