Suppr超能文献

利用模型输入和场输出的降维进行快速代理建模:在增材制造中的应用

Fast Surrogate Modeling using Dimensionality Reduction in Model Inputs and Field Output: Application to Additive Manufacturing.

作者信息

Vohra Manav, Nath Paromita, Mahadevan Sankaran, Lee Yung-Tsun Tina

机构信息

Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235.

Systems Integration Division, Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899.

出版信息

Reliab Eng Syst Saf. 2020;201. doi: https://doi.org/10.1016/j.ress.2020.106986.

Abstract

A novel approach to surrogate modeling motivated by recent advancements in parameter dimension reduction is proposed. Specifically, the approach aims to speed-up surrogate modeling for mapping multiple input variables to a field quantity of interest. Computational efficiency is accomplished by first identifying principal components (PC) and corresponding features in the output field data. A map from inputs to each feature is considered, and the active subspace (AS) methodology is used to capture their relationship in a low-dimensional subspace in the input domain. Thus, the PCAS method accomplishes dimension reduction in the input as well as the output. The method is demonstrated on a realistic problem pertaining to variability in residual stress in an additively manufactured component due to the stochastic nature of the process variables and material properties. The resulting surrogate model is exploited for uncertainty propagation, and identification of stress hotspots in the part. Additionally, the surrogate model is used for global sensitivity analysis to quantify relative contributions of the uncertain inputs to stress variability. Our findings based on the considered application are indicative of enormous potential for computational gains in such analyses, especially in generating training data, and enabling advancements in control and optimization of additive manufacturing processes.

摘要

提出了一种受参数降维最新进展启发的代理建模新方法。具体而言,该方法旨在加速将多个输入变量映射到感兴趣的场量的代理建模。通过首先识别输出场数据中的主成分(PC)和相应特征来实现计算效率。考虑从输入到每个特征的映射,并使用活动子空间(AS)方法在输入域的低维子空间中捕获它们的关系。因此,PCAS方法在输入和输出中都实现了降维。该方法在一个实际问题上得到了验证,该问题涉及由于工艺变量和材料特性的随机性而导致的增材制造部件残余应力的变化。所得的代理模型用于不确定性传播以及识别部件中的应力热点。此外,代理模型用于全局敏感性分析,以量化不确定输入对应力变化的相对贡献。我们基于所考虑应用的研究结果表明,此类分析在计算收益方面具有巨大潜力,尤其是在生成训练数据以及推动增材制造工艺的控制和优化方面。

相似文献

3
Data-driven Uncertainty Quantification in Computational Human Head Models.计算人体头部模型中数据驱动的不确定性量化
Comput Methods Appl Mech Eng. 2022 Aug 1;398. doi: 10.1016/j.cma.2022.115108. Epub 2022 Jun 21.
7
Dimensionality Reduction in Surrogate Modeling: A Review of Combined Methods.代理建模中的降维:组合方法综述
Data Sci Eng. 2022;7(4):402-427. doi: 10.1007/s41019-022-00193-5. Epub 2022 Aug 21.
9
Optimization framework for patient-specific modeling under uncertainty.不确定性下的患者特定建模优化框架。
Int J Numer Method Biomed Eng. 2023 Feb;39(2):e3665. doi: 10.1002/cnm.3665. Epub 2022 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验