Department of Health Technology and Services Research, University of Twente, Enschede, The Netherlands.
Department of Urology, Ziekenhuisgroep Twente, Hengelo, The Netherlands.
Eur Urol Oncol. 2018 Oct;1(5):411-417. doi: 10.1016/j.euo.2018.04.016. Epub 2018 Jun 28.
Multiple statistical models predicting lymph node involvement (LNI) in prostate cancer (PCa) exist to support clinical decision-making regarding extended pelvic lymph node dissection (ePLND).
To validate models predicting LNI in Dutch PCa patients.
DESIGN, SETTING, AND PARTICIPANTS: Sixteen prediction models were validated using a patient cohort of 1001 men who underwent ePLND. Patient characteristics included serum prostate specific antigen (PSA), cT stage, primary and secondary Gleason scores, number of biopsy cores taken, and number of positive biopsy cores.
Model performance was assessed using the area under the receiver operating characteristic curve (AUC). Calibration plots were used to visualize over- or underestimation by the models.
LNI was identified in 276 patients (28%). Patients with LNI had higher PSA, higher primary Gleason pattern, higher Gleason score, higher number of nodes harvested, higher number of positive biopsy cores, and higher cT stage compared to patients without LNI. Predictions generated by the 2012 Briganti nomogram (AUC 0.76) and the Memorial Sloan Kettering Cancer Center (MSKCC) web calculator (AUC 0.75) were the most accurate. Calibration had a decisive role in selecting the most accurate models because of overlapping confidence intervals for the AUCs. Underestimation of LNI probability in patients had a predicted probability of <20%. The omission of model updating was a limitation of the study.
Models predicting LNI in PCa patients were externally validated in a Dutch patient cohort. The 2012 Briganti and MSKCC nomograms were identified as the most accurate prediction models available.
In this report we looked at how well models were able to predict the risk of prostate cancer spreading to the pelvic lymph nodes. We found that two models performed similarly in predicting the most accurate probabilities.
有多种预测前列腺癌(PCa)淋巴结受累(LNI)的统计模型,以支持关于扩大盆腔淋巴结清扫术(ePLND)的临床决策。
验证用于荷兰 PCa 患者的 LNI 预测模型。
设计、设置和参与者:使用接受 ePLND 的 1001 名男性患者队列验证了 16 个预测模型。患者特征包括血清前列腺特异性抗原(PSA)、cT 分期、原发和次要 Gleason 评分、活检芯数和阳性活检芯数。
使用接收者操作特征曲线下的面积(AUC)评估模型性能。校准图用于可视化模型的高估或低估。
276 名患者(28%)中发现了 LNI。与无 LNI 的患者相比,LNI 患者的 PSA 更高、原发 Gleason 模式更高、Gleason 评分更高、采集的淋巴结数量更多、阳性活检芯数量更多、cT 分期更高。2012 年 Briganti 列线图(AUC 0.76)和纪念斯隆凯特琳癌症中心(MSKCC)网络计算器(AUC 0.75)生成的预测结果最准确。由于 AUC 的置信区间重叠,校准在选择最准确的模型方面起着决定性的作用。对 LNI 概率的低估导致患者的预测概率<20%。模型更新的遗漏是研究的一个局限性。
在荷兰患者队列中对预测 PCa 患者 LNI 的模型进行了外部验证。2012 年 Briganti 和 MSKCC 列线图被确定为可用的最准确预测模型。
在本报告中,我们研究了模型预测前列腺癌扩散至盆腔淋巴结的风险的能力。我们发现,两种模型在预测最准确的概率方面表现相似。