Suppr超能文献

用于研究硒化镉铟(α-CdInSe)三元半导体化合物微观结构参数的计算与实验方法。

Computational and experimental approach for investigating the microstructural parameters of a cadmium indium selenide (α-CdInSe) ternary semiconducting compound.

作者信息

Dhruv S D, Sharko Sergei A, Serokurova Aleksandra I, Novitskii Nikolai N, Goroshko D L, Rayani Parth, Jangale Jagruti, Agrawal Naveen, Solanki Vanaraj, Markna J H, Kataria Bharat, Dhruv D K

机构信息

Natubhai V. Patel College of Pure and Applied Sciences, The Charutar Vidya Mandal (CVM) University Vallabh Vidyanagar 388120 Gujarat India

Laboratory of Magnetic Films Physics, Scientific-Practical Materials Research Centre of National Academy of Sciences of Belarus 220072 Minsk Belarus.

出版信息

RSC Adv. 2025 May 7;15(19):14859-14875. doi: 10.1039/d5ra01850a. eCollection 2025 May 6.

Abstract

Several properties are carefully considered before choosing a semiconducting material for the fabrication of a thin-film electronic device. Cadmium indium selenide (CdInSe) is a ternary semiconducting compound belonging to the II-III-VI family, where II = zinc (Zn), cadmium (Cd), or mercury (Hg); III = aluminium (Al), gallium (Ga), or indium (In); and VI = sulphur (S), selenium (Se), or tellurium (Te). The Cambridge serial total energy package (CASTEP) module, within the framework of density functional theory (DFT) using the PBE-GGA (Perdew-Burke-Ernzerhof generalized gradient approximation), was used to compute the elastic constants for the CdInSe ternary semiconducting compound. Stoichiometric amounts of 5 N-pure (99.999%) Cd, In, and Se elements were used to synthesize the CdInSe compound using a microcontroller-based programmable high-temperature rotary furnace. X-ray diffraction (XRD) was used to examine the crystal structure and phase purity of the synthesized CdInSe ternary semiconducting compound. The synthesized CdInSe ternary semiconducting compound exhibited a high level of crystallinity, as evinced by its strong XRD peak intensity and narrow full width at half maximum (FWHM, ) of the diffraction peaks. Identification, indexing, and accurate mapping of the X-ray diffractogram peaks of CdInSe were successfully performed using ICDD card No. 01-089-2388. The synthesized CdInSe ternary semiconducting compound possessed a single-phase pseudo-cubic α-phase tetragonal structure ( ≃ ) with the 4̄2(111) crystallographic space group (SG). For the most prominent XRD peak (111), the stacking fault (SF) value of the ternary semiconducting compound CdInSe was determined to be 1.0267 × 10. For the preferred orientations of the crystallites along a crystal plane (), the texture coefficient ( ) of each XRD peak of the ternary semiconducting compound CdInSe was measured, yielding values close to unity (≃1). The degree of preferred orientation () for the ternary semiconducting compound CdInSe was found to be 9.6751 × 10. To gain insight into the growth behavior of the synthesized CdInSe ternary semiconducting compound, the Bravais theory was applied to compute the -interplanar spacings ( ), enabling inference on the significance of the (111) plane in the crystal structure of CdInSe. The lattice constant () for the CdInSe ternary semiconducting compound was 0.5818 nm, corresponding to a cell volume of 0.1969 nm, calculated using the Miller indices for the prominent (111) plane. Rietveld refinement (RR) of the XRD data for the ternary semiconducting compound CdInSe was performed using the FullProf Suite software. Several microstructural parameters of the CdInSe compound, including lattice parameter (), crystallite size (), lattice strain (), root mean square strain ( ), dislocation density (), lattice stress (), and energy density (), were determined. Additionally, bulk modulus ( ), shear modulus ( ), Young's modulus (), Poisson's ratio (), elastic anisotropy, melting temperature ( ), transverse sound velocity ( ), longitudinal sound velocity ( ), average wave velocity ( ), and Debye temperature ( ) were derived for the CdInSe compound. Energy dispersive X-ray analysis (EDAX) with elemental mapping and a densitometer (pycnometer) confirmed the stoichiometry (with elemental distribution) and density () of the synthesized CdInSe compound, respectively. Room temperature (RT) (≃300 K) Fourier transform infrared (FTIR) spectroscopy in the wavenumber () range of 4000-400 cm confirmed the purity of the synthesized CdInSe ternary semiconducting compound by detecting the presence of functional group/s, if any, in the FTIR spectra. The findings obtained from the detailed investigation of the CdInSe compound may serve as a valuable reference for future researchers focused on device development. Accordingly, the authors have made a concerted effort to examine various properties of the CdInSe ternary semiconducting compound through both theoretical and experimental approaches. It is anticipated that researchers worldwide may utilize these results in the development of a wide range of electronic devices. The implications of the study are discussed.

摘要

在选择用于制造薄膜电子器件的半导体材料之前,需要仔细考虑几个特性。硒化镉铟(CdInSe)是一种属于II-III-VI族的三元半导体化合物,其中II = 锌(Zn)、镉(Cd)或汞(Hg);III = 铝(Al)、镓(Ga)或铟(In);VI = 硫(S)、硒(Se)或碲(Te)。在密度泛函理论(DFT)框架内,使用PBE-GGA(Perdew-Burke-Ernzerhof广义梯度近似)的剑桥串行总能量包(CASTEP)模块,用于计算CdInSe三元半导体化合物的弹性常数。使用基于微控制器的可编程高温旋转炉,采用化学计量比的5N纯度(99.999%)的Cd、In和Se元素来合成CdInSe化合物。X射线衍射(XRD)用于检查合成的CdInSe三元半导体化合物的晶体结构和相纯度。合成的CdInSe三元半导体化合物表现出高结晶度,这通过其强烈的XRD峰强度和衍射峰的半高宽(FWHM)较窄得以证明。使用ICDD卡号01-089-2388成功地对CdInSe的X射线衍射图谱峰进行了识别、索引和精确映射。合成的CdInSe三元半导体化合物具有单相伪立方α相四方结构(≃ ),其晶体学空间群(SG)为4̄2(111)。对于最突出的XRD峰(111),确定三元半导体化合物CdInSe的堆垛层错(SF)值为1.0267×10。对于微晶沿晶面()的择优取向,测量了三元半导体化合物CdInSe每个XRD峰的织构系数( ),得到的值接近1(≃1)。发现三元半导体化合物CdInSe的择优取向度()为9.6751×10。为了深入了解合成的CdInSe三元半导体化合物的生长行为,应用布拉菲理论计算晶面间距( ),从而推断(111)面在CdInSe晶体结构中的重要性。CdInSe三元半导体化合物的晶格常数()为0.5818 nm,使用突出(111)面的米勒指数计算得出的晶胞体积为0.1969 nm。使用FullProf Suite软件对三元半导体化合物CdInSe的XRD数据进行了Rietveld精修(RR)。确定了CdInSe化合物的几个微观结构参数,包括晶格参数()、微晶尺寸()、晶格应变()、均方根应变( )、位错密度()、晶格应力()和能量密度()。此外,还推导出了CdInSe化合物的体模量( )、剪切模量( )、杨氏模量()、泊松比()、弹性各向异性、熔点温度( )、横向声速( )、纵向声速( )、平均波速( )和德拜温度( )。能量色散X射线分析(EDAX)结合元素映射和密度计(比重瓶)分别证实了合成的CdInSe化合物的化学计量比(以及元素分布)和密度()。在4000 - 400 cm波数()范围内的室温(RT)(≃300 K)傅里叶变换红外(FTIR)光谱通过检测FTIR光谱中是否存在官能团来确认合成的CdInSe三元半导体化合物的纯度。对CdInSe化合物进行详细研究获得的结果可为未来专注于器件开发的研究人员提供有价值的参考。因此,作者齐心协力通过理论和实验方法研究了CdInSe三元半导体化合物的各种特性。预计全球的研究人员可能会在开发各种电子器件中利用这些结果。讨论了该研究的意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93f6/12057732/30466d1251a6/d5ra01850a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验