Huang Yeqian, Chen Linyan, Zhang Zhiyuan, Liu Yu, Huang Leizhen, Liu Yang, Liu Pengcheng, Song Fengqin, Li Zhengyong, Zhang Zhenyu
Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China.
Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
Front Med (Lausanne). 2025 Apr 23;12:1510793. doi: 10.3389/fmed.2025.1510793. eCollection 2025.
Glioblastoma (GBM) is a highly malignant brain tumor with complex molecular mechanisms. Histopathological images provide valuable morphological information of tumors. This study aims to evaluate the predictive potential of quantitative histopathological image features (HIF) for molecular characteristics and overall survival (OS) in GBM patients by integrating HIF with multi-omics data.
We included 439 GBM patients with eligible histopathological images and corresponding genetic data from The Cancer Genome Atlas (TCGA). A total of 550 image features were extracted from the histopathological images. Machine learning algorithms were employed to identify molecular characteristics, with random forest (RF) models demonstrating the best predictive performance. Predictive models for OS were constructed based on HIF using RF. Additionally, we enrolled tissue microarrays of 67 patients as an external validation set. The prognostic histopathological image features (PHIF) were identified using two machine learning algorithms, and prognosis-related gene modules were discovered through WGCNA.
The RF-based OS prediction model achieved significant prognostic accuracy (5-year AUC = 0.829). Prognostic models were also developed using single-omics, the integration of HIF and single-omics (HIF + genomics, HIF + transcriptomics, HIF + proteomics), and all features (multi-omics). The multi-omics model achieved the best prediction performance (1-, 3- and 5-year AUCs of 0.820, 0.926 and 0.878, respectively).
Our study indicated a certain prognostic value of HIF, and the integrated multi-omics model may enhance the prognostic prediction of GBM, offering improved accuracy and robustness for clinical application.
胶质母细胞瘤(GBM)是一种具有复杂分子机制的高度恶性脑肿瘤。组织病理学图像提供了肿瘤有价值的形态学信息。本研究旨在通过将定量组织病理学图像特征(HIF)与多组学数据整合,评估其对GBM患者分子特征和总生存期(OS)的预测潜力。
我们纳入了439例具有合格组织病理学图像及来自癌症基因组图谱(TCGA)相应基因数据的GBM患者。从组织病理学图像中提取了总共550个图像特征。采用机器学习算法识别分子特征,随机森林(RF)模型表现出最佳预测性能。使用RF基于HIF构建OS预测模型。此外,我们纳入了67例患者的组织微阵列作为外部验证集。使用两种机器学习算法识别预后组织病理学图像特征(PHIF),并通过加权基因共表达网络分析(WGCNA)发现预后相关基因模块。
基于RF的OS预测模型实现了显著的预后准确性(5年曲线下面积[AUC]=0.829)。还使用单组学、HIF与单组学的整合(HIF+基因组学、HIF+转录组学、HIF+蛋白质组学)以及所有特征(多组学)开发了预后模型。多组学模型实现了最佳预测性能(1年、3年和5年AUC分别为0.820、0.926和0.878)。
我们的研究表明HIF具有一定的预后价值,整合的多组学模型可能增强GBM的预后预测,为临床应用提供更高的准确性和稳健性。