Kuch Andrian, Schweighofer Nicolas, Finley James M, McKenzie Alison, Wen Yuxin, Sanchez Natalia
IEEE Trans Neural Syst Rehabil Eng. 2025;33:1927-1938. doi: 10.1109/TNSRE.2025.3568325. Epub 2025 May 16.
Gait impairment post-stroke is highly heterogeneous. Prior studies classified heterogeneous gait patterns into subgroups using peak kinematics, kinetics, or spatiotemporal variables. A limitation of this approach is the need to select discrete features in the gait cycle. Using continuous gait cycle data, we accounted for differences in magnitude and timing of kinematics. Here, we propose a machine-learning pipeline combining supervised and unsupervised learning. We first trained a Convolutional Neural Network and a Temporal Convolutional Network to extract features that distinguish impaired from neurotypical gait. Then, we used unsupervised time-series k-means and Gaussian Mixture Models to identify gait clusters. We tested our pipeline using kinematic data of 28 neurotypical and 39 individuals post-stroke. We assessed differences between clusters using ANOVA. We identified two neurotypical gait clusters (C1, C2). C1: normative gait pattern. C2: shorter stride time. We observed three post-stroke gait clusters (S1, S2, S3). S1: mild impairment and increased bilateral knee flexion during loading response. S2: moderate impairment, slow speed, short steps, increased knee flexion during stance bilaterally, and reduced paretic knee flexion during swing. S3: mild impairment, asymmetric swing time, increased ankle abduction during the gait cycle, and reduced dorsiflexion bilaterally. Our results indicate that joint kinematics post-stroke are mostly distinct from controls, and highlight kinematic impairments in the non-paretic limb. The post-stroke clusters showed distinct impairments that would require different interventions, providing additional information for clinicians about rehabilitation targets.
中风后的步态障碍具有高度异质性。先前的研究使用峰值运动学、动力学或时空变量将异质性步态模式分为亚组。这种方法的一个局限性是需要在步态周期中选择离散特征。利用连续的步态周期数据,我们考虑了运动学在幅度和时间上的差异。在此,我们提出一种结合监督学习和无监督学习的机器学习流程。我们首先训练了一个卷积神经网络和一个时间卷积网络,以提取区分受损步态和正常步态的特征。然后,我们使用无监督时间序列k均值和高斯混合模型来识别步态簇。我们使用28名正常人和39名中风后个体的运动学数据测试了我们的流程。我们使用方差分析评估簇之间的差异。我们识别出两个正常步态簇(C1、C2)。C1:标准步态模式。C2:步幅时间较短。我们观察到三个中风后步态簇(S1、S2、S3)。S1:轻度损伤,在负重反应期间双侧膝关节屈曲增加。S2:中度损伤,速度慢,步幅短,双侧站立时膝关节屈曲增加,摆动时患侧膝关节屈曲减少。S3:轻度损伤,摆动时间不对称,步态周期中踝关节外展增加,双侧背屈减少。我们的结果表明,中风后的关节运动学大多与对照组不同,并突出了非患侧肢体的运动学损伤。中风后的簇显示出不同的损伤,需要不同的干预措施,为临床医生提供了关于康复目标的额外信息。