Suppr超能文献

OpenCap:从智能手机视频中获取人类运动动力学。

OpenCap: Human movement dynamics from smartphone videos.

机构信息

Departments of Bioengineering, Stanford University, Stanford, California, United States of America.

Radiology, Stanford University, Stanford, California, United States of America.

出版信息

PLoS Comput Biol. 2023 Oct 19;19(10):e1011462. doi: 10.1371/journal.pcbi.1011462. eCollection 2023 Oct.

Abstract

Measures of human movement dynamics can predict outcomes like injury risk or musculoskeletal disease progression. However, these measures are rarely quantified in large-scale research studies or clinical practice due to the prohibitive cost, time, and expertise required. Here we present and validate OpenCap, an open-source platform for computing both the kinematics (i.e., motion) and dynamics (i.e., forces) of human movement using videos captured from two or more smartphones. OpenCap leverages pose estimation algorithms to identify body landmarks from videos; deep learning and biomechanical models to estimate three-dimensional kinematics; and physics-based simulations to estimate muscle activations and musculoskeletal dynamics. OpenCap's web application enables users to collect synchronous videos and visualize movement data that is automatically processed in the cloud, thereby eliminating the need for specialized hardware, software, and expertise. We show that OpenCap accurately predicts dynamic measures, like muscle activations, joint loads, and joint moments, which can be used to screen for disease risk, evaluate intervention efficacy, assess between-group movement differences, and inform rehabilitation decisions. Additionally, we demonstrate OpenCap's practical utility through a 100-subject field study, where a clinician using OpenCap estimated musculoskeletal dynamics 25 times faster than a laboratory-based approach at less than 1% of the cost. By democratizing access to human movement analysis, OpenCap can accelerate the incorporation of biomechanical metrics into large-scale research studies, clinical trials, and clinical practice.

摘要

人体运动动力学的测量方法可以预测受伤风险或肌肉骨骼疾病的进展等结果。然而,由于所需的成本、时间和专业知识过高,这些测量方法在大规模研究或临床实践中很少被量化。在这里,我们提出并验证了 OpenCap,这是一个开源平台,可使用从两个或多个智能手机捕获的视频计算人体运动的运动学(即运动)和动力学(即力)。OpenCap 利用姿势估计算法从视频中识别身体地标;深度学习和生物力学模型来估计三维运动学;以及基于物理的模拟来估计肌肉激活和肌肉骨骼动力学。OpenCap 的网络应用程序允许用户收集同步视频并可视化运动数据,这些数据将在云端自动处理,从而消除了对专用硬件、软件和专业知识的需求。我们表明 OpenCap 可以准确预测动态测量值,例如肌肉激活、关节载荷和关节力矩,这些测量值可用于筛查疾病风险、评估干预效果、评估组间运动差异以及为康复决策提供信息。此外,我们通过一项包含 100 名受试者的现场研究证明了 OpenCap 的实际效用,其中一位临床医生使用 OpenCap 进行肌肉骨骼动力学估计的速度比基于实验室的方法快 25 倍,成本仅为其 1%。通过使人们能够更方便地进行人体运动分析,OpenCap 可以加速将生物力学指标纳入大规模研究、临床试验和临床实践。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a020/10586693/02d782211786/pcbi.1011462.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验