Suppr超能文献

盖索洛西明作为MDM2-p53相互作用抑制剂的抗癌活性阐释:一项计算机模拟研究。

Anti-cancer activity elucidation of geissolosimine as an MDM2-p53 interaction inhibitor: An in-silico study.

作者信息

Al-Amin Md, Tanjin Rehnuma, Karim Md Rasul, Etee Jannatul Mawa, Siddika Ayesha, Akter Nafisa, Uddin Md Helal, Mahmud Ratul, Saffat Tasfia, Hossen Md Faruk, Mowlee Samira Idris, Rafa Elmu Kabir, Akter Sumi

机构信息

Department of Pharmacy, Islamic University, Kushtia, Bangladesh.

出版信息

PLoS One. 2025 May 8;20(5):e0323003. doi: 10.1371/journal.pone.0323003. eCollection 2025.

Abstract

For cancer treatment, Inhibition of murine double minute (MDM2) & p53 interaction is considered an attractive therapeutic approach. In this study, we performed an integrated virtual screening (i.e., QSAR, structural similarity, molecular docking, and molecular dynamic simulation) on the in-house building alkaloids library. Geissolosimine (i.e., an indole alkaloid) was predicted as a potential inhibitor for MDM2-p53 interaction. The predicted pIC50 value of Geissolosimine, was 7.013 M. Moreover, Geissolosimine showed 0.62% structural similarity to 'SAR405838' (i.e., a clinical trial inhibitor for MDM2-p53 interaction inhibition); and a docking score of -10.9 kcal/mol that was higher than the 'SAR405838'.100 ns molecular dynamics simulation (MDS) was performed to validate the docking result and it exhibited better binding stability to MDM2. The pharmacokinetic & drug-likeness analysis suggested that Geissolosimine had potential to be a drug-like compound. However, in vitro & in vivo assays will be required to validate this study.

摘要

对于癌症治疗,抑制小鼠双微体(MDM2)与p53的相互作用被认为是一种有吸引力的治疗方法。在本研究中,我们对内部构建的生物碱库进行了综合虚拟筛选(即定量构效关系、结构相似性、分子对接和分子动力学模拟)。盖索洛西明(即一种吲哚生物碱)被预测为MDM2-p53相互作用的潜在抑制剂。盖索洛西明的预测半数抑制浓度负对数(pIC50)值为7.013 M。此外,盖索洛西明与“SAR405838”(即一种用于抑制MDM2-p53相互作用的临床试验抑制剂)的结构相似性为0.62%;其对接分数为-10.9千卡/摩尔,高于“SAR405838”。进行了100纳秒的分子动力学模拟(MDS)以验证对接结果,结果表明它与MDM2具有更好的结合稳定性。药代动力学和类药性分析表明盖索洛西明有潜力成为一种类药物化合物。然而,需要进行体外和体内试验来验证本研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验