Tabbal Judie, Ebadi Aida, Mheich Ahmad, Kabbara Aya, Güntekin Bahar, Yener Görsev, Paban Veronique, Gschwandtner Ute, Fuhr Peter, Verin Marc, Babiloni Claudio, Allouch Sahar, Hassan Mahmoud
MINDIG, F-35000, Rennes, France.
Service des Troubles du Spectre de l'Autisme et apparentés, Département de Psychiatrie, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
NPJ Parkinsons Dis. 2025 May 8;11(1):117. doi: 10.1038/s41531-025-00957-6.
Neurodegenerative diseases like Parkinson's (PD) and Alzheimer's (AD) exhibit considerable heterogeneity of functional brain features within patients, complicating diagnosis and treatment. Here, we use electroencephalography (EEG) and normative modeling to investigate neurophysiological mechanisms underpinning this heterogeneity. Resting-state EEG data from 14 clinical units included healthy adults (n = 499) and patients with PD (n = 237) and AD (n = 197), aged over 40. Spectral and source connectivity analyses provided features for normative modeling, revealing significant, frequency-dependent EEG deviations with high heterogeneity in PD and AD. Around 30% of patients exhibited spectral deviations, while ~80% showed functional source connectivity deviations. Notably, the spatial overlap of deviant features did not exceed 60% for spectral and 25% for connectivity analysis. Furthermore, patient-specific deviations correlated with clinical measures, with greater deviations linked to worse UPDRS for PD (⍴ = 0.24, p = 0.025) and MMSE for AD (⍴ = -0.26, p = 0.01). These results suggest that EEG deviations could enrich individualized clinical assessment in Precision Neurology.
帕金森病(PD)和阿尔茨海默病(AD)等神经退行性疾病在患者体内表现出明显的大脑功能特征异质性,这使得诊断和治疗变得复杂。在此,我们使用脑电图(EEG)和规范建模来研究这种异质性背后的神经生理机制。来自14个临床单位的静息态EEG数据包括40岁以上的健康成年人(n = 499)、PD患者(n = 237)和AD患者(n = 197)。频谱和源连接性分析为规范建模提供了特征,揭示了PD和AD中存在显著的、频率依赖性的EEG偏差,且异质性较高。约30%的患者表现出频谱偏差,而约80%的患者表现出功能源连接性偏差。值得注意的是,对于频谱分析,异常特征的空间重叠不超过60%,对于连接性分析则不超过25%。此外,患者特异性偏差与临床指标相关,偏差越大,PD患者的统一帕金森病评定量表(UPDRS)得分越低(⍴ = 0.24,p = 0.025),AD患者的简易精神状态检查表(MMSE)得分越低(⍴ = -0.26,p = 0.01)。这些结果表明,EEG偏差可以丰富精准神经病学中的个体化临床评估。