Suppr超能文献

与大语言模型进行重复博弈。

Playing repeated games with large language models.

作者信息

Akata Elif, Schulz Lion, Coda-Forno Julian, Oh Seong Joon, Bethge Matthias, Schulz Eric

机构信息

Institute for Human-Centered AI, Helmholtz Munich, Oberschleißheim, Germany.

Max Planck Institute for Biological Cybernetics, Tübingen, Germany.

出版信息

Nat Hum Behav. 2025 May 8. doi: 10.1038/s41562-025-02172-y.

Abstract

Large language models (LLMs) are increasingly used in applications where they interact with humans and other agents. We propose to use behavioural game theory to study LLMs' cooperation and coordination behaviour. Here we let different LLMs play finitely repeated 2 × 2 games with each other, with human-like strategies, and actual human players. Our results show that LLMs perform particularly well at self-interested games such as the iterated Prisoner's Dilemma family. However, they behave suboptimally in games that require coordination, such as the Battle of the Sexes. We verify that these behavioural signatures are stable across robustness checks. We also show how GPT-4's behaviour can be modulated by providing additional information about its opponent and by using a 'social chain-of-thought' strategy. This also leads to better scores and more successful coordination when interacting with human players. These results enrich our understanding of LLMs' social behaviour and pave the way for a behavioural game theory for machines.

摘要

大语言模型(LLMs)越来越多地应用于与人类和其他智能体交互的场景中。我们建议使用行为博弈论来研究大语言模型的合作与协调行为。在此,我们让不同的大语言模型相互之间、与具有类人策略的模型以及实际人类玩家进行有限次重复的2×2博弈。我们的结果表明,大语言模型在诸如重复囚徒困境这类自利博弈中表现尤为出色。然而,在诸如性别之战这类需要协调的博弈中,它们的表现并不理想。我们验证了这些行为特征在稳健性检查中是稳定的。我们还展示了如何通过提供关于对手的额外信息以及使用“社会思维链”策略来调节GPT-4的行为。这在与人类玩家交互时也能带来更好的分数和更成功的协调。这些结果丰富了我们对大语言模型社会行为的理解,并为机器行为博弈论铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验