Binz Marcel, Akata Elif, Bethge Matthias, Brändle Franziska, Callaway Fred, Coda-Forno Julian, Dayan Peter, Demircan Can, Eckstein Maria K, Éltető Noémi, Griffiths Thomas L, Haridi Susanne, Jagadish Akshay K, Ji-An Li, Kipnis Alexander, Kumar Sreejan, Ludwig Tobias, Mathony Marvin, Mattar Marcelo, Modirshanechi Alireza, Nath Surabhi S, Peterson Joshua C, Rmus Milena, Russek Evan M, Saanum Tankred, Schubert Johannes A, Schulze Buschoff Luca M, Singhi Nishad, Sui Xin, Thalmann Mirko, Theis Fabian J, Truong Vuong, Udandarao Vishaal, Voudouris Konstantinos, Wilson Robert, Witte Kristin, Wu Shuchen, Wulff Dirk U, Xiong Huadong, Schulz Eric
Institute for Human-Centered AI, Helmholtz Center, Munich, Germany.
University of Tübingen, Tübingen, Germany.
Nature. 2025 Jul 2. doi: 10.1038/s41586-025-09215-4.
Establishing a unified theory of cognition has been an important goal in psychology. A first step towards such a theory is to create a computational model that can predict human behaviour in a wide range of settings. Here we introduce Centaur, a computational model that can predict and simulate human behaviour in any experiment expressible in natural language. We derived Centaur by fine-tuning a state-of-the-art language model on a large-scale dataset called Psych-101. Psych-101 has an unprecedented scale, covering trial-by-trial data from more than 60,000 participants performing in excess of 10,000,000 choices in 160 experiments. Centaur not only captures the behaviour of held-out participants better than existing cognitive models, but it also generalizes to previously unseen cover stories, structural task modifications and entirely new domains. Furthermore, the model's internal representations become more aligned with human neural activity after fine-tuning. Taken together, our results demonstrate that it is possible to discover computational models that capture human behaviour across a wide range of domains. We believe that such models provide tremendous potential for guiding the development of cognitive theories, and we present a case study to demonstrate this.
建立一个统一的认知理论一直是心理学的一个重要目标。迈向这一理论的第一步是创建一个能够预测人类在广泛情境下行为的计算模型。在此,我们介绍半人马座(Centaur),这是一个能够预测和模拟任何能用自然语言表述的实验中人类行为的计算模型。我们通过在一个名为Psych - 101的大规模数据集上微调一个先进的语言模型来推导半人马座模型。Psych - 101具有前所未有的规模,涵盖了超过60000名参与者在160个实验中做出超过10000000次选择的逐次试验数据。半人马座模型不仅比现有的认知模型更能捕捉未参与训练的参与者的行为,而且还能推广到以前未见过的故事背景、结构性任务修改以及全新的领域。此外,经过微调后,该模型的内部表征与人类神经活动更加一致。综合来看,我们的结果表明,有可能发现能够捕捉广泛领域内人类行为的计算模型。我们相信,这样的模型为指导认知理论的发展提供了巨大潜力,并且我们通过一个案例研究来证明这一点。