微生理肠道芯片可实现……的长期发育。 (原句不完整,翻译可能不太准确)
Microphysiological gut-on-chip enables extended development of .
作者信息
Gunasekera Samantha, Thierry Benjamin, King Brendon, Monis Paul, Carr Jillian M, Chopra Abha, Watson Mark, O'Dea Mark, Cheah Edward, Ram Ramesh, Clode Peta L, Hijjawi Nawal, Ryan Una
机构信息
Harry Butler Institute, College of Environmental and Life Sciences, Murdoch University, Murdoch, WA, Australia.
Future Industries Institute, University of South Australia, Adelaide, SA, Australia.
出版信息
Front Cell Infect Microbiol. 2025 Apr 24;15:1564806. doi: 10.3389/fcimb.2025.1564806. eCollection 2025.
INTRODUCTION
is the dominant species infecting humans, but most advances in developing robust culturing platforms for have utilised . Consequently, there is relatively little available information specific to the biology and life cycle of . The present study utilised a pumpless and tubeless gut-on-chip to generate a physiologically relevant environment by applying a constant fluid shear stress of 0.02 dyn cm to HCT-8 cells.
METHODS
Gut-on-chips were fabricated using standard soft lithography. oocysts isolated from human pathology samples were used to infect the human ileocecal colorectal adenocarcinoma (HCT-8) cell line under a constant fluid shear stress of 0.02 dyn cm. Parasite growth was assessed using a -specific quantitative PCR, a genus-specific immunofluorescence assay, and scanning electron microscopy. Differences in the HCT-8 transcriptome with and without fluid shear stress, and the host-parasite interaction, were both assessed using bulk transcriptomics.
RESULTS
Transcriptomic analysis of the HCT-8 cell line cultured within the gut-on-chip demonstrated a metabolic shift towards oxidative phosphorylation when compared to the same cell line cultured under static conditions. Extended (subtype IdA15G1) cultures were sustained for up to 10 days within the gut-on-chip as shown by a -specific qPCR and a genus-specific immunofluorescence assay, which demonstrated ~30-fold amplification in the gut-on-chip over the duration of the experiment. Scanning electron microscopy of infected monolayers identified trophozoites, meronts, merozoites, macrogamonts, microgamonts, and possible gamont-like stages at 48 h post-infection. The potential role of gamonts in the life cycle remains unclear and warrants further investigation. Transcriptomes of HCT-8 cells infected with revealed upregulation of biological processes associated with cell cycle regulation and cell signalling in -infected cells under fluid shear stress compared to static culture.
CONCLUSIONS
These data demonstrate that bioengineered gut-on-chip models support extended growth and can be used to interrogate responses of host cells to infection. Owing to its relative simplicity, the pumpless and tubeless gut-on-chip can be accessible to most laboratories with established HCT-8 infection models for culture.
引言
[病原体名称]是感染人类的主要病原体,但在开发强大的[病原体名称]培养平台方面的大多数进展都利用了[其他相关因素]。因此,关于[病原体名称]生物学和生命周期的特定可用信息相对较少。本研究利用无泵无管的肠道芯片,通过对HCT - 8细胞施加0.02达因/平方厘米的恒定流体剪切应力,生成生理相关的[病原体名称]环境。
方法
使用标准软光刻技术制造肠道芯片。从人类病理样本中分离的[病原体名称]卵囊在0.02达因/平方厘米的恒定流体剪切应力下用于感染人回盲部结肠直肠腺癌(HCT - 8)细胞系。使用[病原体名称]特异性定量PCR、[病原体属名称]特异性免疫荧光测定和扫描电子显微镜评估寄生虫生长。使用大量转录组学评估有无流体剪切应力时HCT - 8转录组的差异以及宿主 - 寄生虫相互作用。
结果
与在静态条件下培养的相同细胞系相比,在肠道芯片内培养的HCT - 8细胞系的转录组分析显示向氧化磷酸化的代谢转变。如[病原体名称]特异性qPCR和[病原体属名称]特异性免疫荧光测定所示,在肠道芯片内[病原体名称](亚型IdA15G1)的延长培养可持续长达10天,这表明在实验期间肠道芯片内有~30倍的扩增。感染单层的扫描电子显微镜在感染后48小时鉴定出滋养体、裂殖体、裂殖子、大配子体、小配子体以及可能的配子体样阶段。配子体在[病原体名称]生命周期中的潜在作用仍不清楚,值得进一步研究。与静态培养相比,在流体剪切应力下感染[病原体名称]的HCT - 8细胞的转录组显示与细胞周期调节和细胞信号传导相关的生物学过程上调。
结论
这些数据表明,生物工程肠道芯片模型支持[病原体名称]的延长生长,可用于研究宿主细胞对感染的反应。由于其相对简单性,大多数建立了用于[病原体名称]培养的HCT - 8感染模型的实验室都可以使用无泵无管的肠道芯片。