Fang Huirong, Yang Qianhui, Liu Kunhong, Huang Xiangyi, Xie Yu
School of Electronic Information, Zhangzhou Institute of Technology, Zhangzhou 363000, China.
Intelligent Monitoring of the Fujian Provincial Higher Education Application Technology Engineering Center, Zhangzhou 363000, China.
iScience. 2025 Apr 2;28(5):112330. doi: 10.1016/j.isci.2025.112330. eCollection 2025 May 16.
Tactile perception is important for the robots to understand their working environment. While in real-world applications, robots usually must face unexpected changes in external conditions, such as the re-installation of the robot end effector or the change of the installation location. Consequently, the collected tactile material data tend to vary to a certain extent, which brings great difficulties to the tactile perception. To handle this problem, different from the former studies of tactile perception in enclosed environments, this study focuses on the tactile material recognition task using robot electronic skin in open scenes. We construct a cross-batch tactile dataset to simulate open scenes and propose the multi-receptive field attention enhancement network (MRFE) to handle tactile material recognition. Compared with other machine learning algorithms, experiments show that the proposed method overcomes the problem of data drift caused by changes in posture, contact force, sliding velocities, exploratory motions, and assembly conditions.
触觉感知对于机器人理解其工作环境至关重要。在实际应用中,机器人通常必须面对外部条件的意外变化,例如机器人末端执行器的重新安装或安装位置的改变。因此,收集到的触觉材料数据往往会在一定程度上发生变化,这给触觉感知带来了很大困难。为了解决这个问题,与以往在封闭环境中进行触觉感知的研究不同,本研究聚焦于在开放场景中使用机器人电子皮肤进行触觉材料识别任务。我们构建了一个跨批次触觉数据集来模拟开放场景,并提出了多感受野注意力增强网络(MRFE)来处理触觉材料识别。与其他机器学习算法相比,实验表明,所提出的方法克服了由姿态、接触力、滑动速度、探索运动和装配条件变化引起的数据漂移问题。